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Abstract. We provide a quantitative three dimensional vortex approximation

construction for the Ginzburg-Landau functional. This construction gives an ap-

proximation of vortex lines coupled to a lower bound for the energy, optimal to

leading order, analogous to the 2D ones, and valid for the first time at the ε-level.

These tools allow for a new approach to analyzing the behavior of global minimiz-

ers for the Ginzburg-Landau functional below and near the first critical field in

3D, followed in [Rom19]. In addition, they allow one to obtain an ε-quantitative

product estimate for the study of Ginzburg-Landau dynamics.
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1. Introduction

1.1. The problem and a brief overview of the state of the art of the subject.
We are interested in studying the full three Ginzburg-Landau functional with applied
magnetic field

GLε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 +

1

2

∫
R3

|H −Hex|2,

which is a model for superconductors in a magnetic field.
Here

• Ω is a bounded domain of R3, that we assume to be Lipschitz and simply
connected.
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• u : Ω → C is called the order parameter. Its modulus squared (the den-
sity of Cooper pairs of superconducting electrons in the Bardeen-Cooper-
Schrieffer (BCS) quantum theory) indicates the local state of the supercon-
ductor: where |u|2 ≈ 1 the material is in the superconducting phase, where
|u|2 ≈ 0 in the normal phase.
• A : R3 → R3 is the electromagnetic vector potential of the induced magnetic

field H = curlA.
• ∇A denotes the covariant gradient ∇− iA.
• Hex : R3 → R3 is a given external (or applied) magnetic field.
• ε > 0 is the inverse of the Ginzburg-Landau parameter usually denoted κ,

a non-dimensional parameter depending only on the material. We will be
interested in the regime of small ε, corresponding to extreme type-II super-
conductors.

An essential feature of type-II superconductors is the occurrence of vortices (similar
to those in fluid mechanics, but quantized) in the presence of an applied magnetic
field. Physically, they correspond to normal phase regions around which a supercon-
ducting loop of current circulates. Since u is complex-valued, it can have zeros with
a nonzero topological degree. Vortices are then topological defects of co-dimension
2 and are the crucial objects of interest in the analysis of the model.

Let us introduce the Ginzburg-Landau free energy

Fε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 + | curlA|2

and the Ginzburg-Landau energy without magnetic field

Eε(u) =
1

2

∫
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2.

In the 1990’s, mathematicians became interested in the Ginzburg-Landau model.
In the pioneering work [BBH94] in the 2D setting (i.e. when Ω is assumed to
be two dimensional), Bethuel, Brezis, and Hélein introduced systematic tools and
asymptotic estimates to study vortices in the model without magnetic field, which
is a complex-valued version of the Allen-Cahn model for phase transitions. A vortex
in 2D is an object centered at an isolated zero of u, around which the phase of u
has a nonzero winding number, called the degree of the vortex. A typical vortex

centered at a point x0 behaves like u = ρeiϕ with ρ = f
(
|x−x0|
ε

)
, where f(0) = 0

and f tends to 1 as r → +∞, i.e. its characteristic core size is ε and

1

2π

∫
∂B(x0,Rε)

∂ϕ

∂τ
= d ∈ Z

is its degree (also defined as the topological-degree of the map u/|u| : ∂B(x0, Rε)→
S1).
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In [BBH94], the effect of the external magnetic field was replaced by a Dirichlet
boundary condition u = g on ∂Ω, where g is an S1-valued map of degree d > 0.
This boundary condition triggers the occurrence of vortices, allowing only for a fixed
number of them. They proved that minimizers u of Eε have d vortices of degree +1
and that

Eε(u) ≈ πd| log ε|+W (a1, . . . , ad) as ε→ 0,

where W is the “renormalized energy”, a function depending only on the vortex-
centers ai, which repel one another according to a Coulomb interaction. This analysis
was then adapted to the study of the free energy by Bethuel and Rivière [BR95],
under a Dirichlet boundary condition on ∂Ω that forces the presence of a fixed
number of vortices.

A new approach was necessary to treat the case of the full model when the number
of vortices gets unbounded as ε→ 0. Tools capable of handling this difficulty were
developed after the works by Jerrard [Jer99] and Sandier [San98]. They introduced
independently the ball construction method, which allows one to obtain universal
lower bounds for two dimensional Ginzburg-Landau energies in terms of the topology
of the vortices. These lower bounds capture the known fact that vortices of degree
d cost at least an order π|d| log 1

ε
of energy. The second tool, which has been widely

used in the analysis of the Ginzburg-Landau model in any dimension after the work
by Jerrard and Soner [JS02], is the Jacobian or vorticity estimate. The vorticity is
defined, for any sufficiently regular configuration (u,A), as

µ(u,A) = curl(iu,∇Au) + curlA,

where (·, ·) denotes the scalar product in C identified with R2 i.e. (a, b) = ab+ab
2

.
This quantity is the U(1)-gauge invariant version of the Jacobian determinant of u
and is the analog of the vorticity of a fluid. The vorticity estimate allows one to
relate the vorticity µ(u,A) with Dirac masses supported on co-dimension 2 objects,
which in 2D are points naturally derived from the ball construction. In a series of
works summarized in the book [SS07], Sandier and Serfaty analyzed the full two
dimensional model and characterized the behavior of global minimizers of GLε in
different regimes of the applied field (see also [SS00a,SS00b,SS00c,SS03]).

Rivière [Riv95], was the first to study the asymptotic behavior of minimizers of
the free energy, under a Dirichlet boundary condition, as ε → 0 in the 3D setting.
Roughly speaking, vortices in 3D are small tubes of radius O(ε) around the one
dimensional zero-set of u. In the limit ε → 0 vortices become curves L with an
integer multiplicity d, whose cost is at least an order πd|L|| log ε| of energy, where
|L| denotes the length of L. In [Riv95], using an η-ellipticity result, Rivière identified
the limiting one dimensional singular set of minimizers of Fε with a mass minimizing
current, which corresponds to a minimal connection. This concept was introduced in
the work by Brezis, Coron, and Lieb [BCL86]. A new approach by Sandier in [San01],
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combined the use of this object with a suitable slicing procedure to obtain the same
result of Rivière in the case without magnetic field, and a generalization to higher
dimension. We refer the interested reader to [LR99,BBO01,LR01,BBM04,ABO05,
SS17] for further results in dimensions 3 and higher, when the applied magnetic field
is zero.

Jerrard, Montero, and Sternberg [JMS04] established the existence of locally min-
imizing vortex solutions to the full three dimensional Ginzburg-Landau energy. Re-
cently, Baldo, Jerrard, Orlandi, and Soner [BJOS12, BJOS13], via a Γ-convergence
argument, described the asymptotic behavior of the full model as ε→ 0. We point
out that conversely to the 2D situation, which is well understood, many questions
remain open in 3D, in particular obtaining all the analogues of the 2D results con-
tained in [SS07]. This is due to the more complicated geometry of the vortices in
3D, which have to be understood in the framework of currents and using geometric
measure theory.

1.2. ε-level estimates for the Ginzburg-Landau functional. The key in Ginzburg-
Landau analysis has proven to be a vortex approximation construction providing
both approximation of the vorticity and lower bound. In 2D, this corresponds to
the ball construction [San98,Jer99,SS07], which is a purely two dimensional method
that provides ε-quantitative estimates. In 3D (and higher), based on the Federer-
Fleming polyhedral deformation theorem, a not quantitative construction was pro-
vided in [ABO05] and later revisited in [BJOS12].

In this paper we present a new 3D vortex approximation construction, which
provides an approximation of vortex filaments coupled to a lower bound for the
energy, optimal to leading order, analogous to the 2D ones, and valid for the first
time at the ε-level. Roughly speaking, our approximation is made as follows: for
configurations (uε, Aε) whose free energy is bounded above by a suitable function of
ε, we consider a grid of side-length δ = δ(ε). If appropriately positioned, the grid
can be taken to satisfy that |uε| > 5/8 on every edge of a cube. Then a 2D vorticity
estimate implies that the restriction of the vorticity µ(uε, Aε) to the boundary of
every cube is well approximated by a linear combination of Dirac masses. Using
minimal connections, we connect the points of support of these measures. Our choice
of grid ensures a good compatibility between the objects constructed in cubes that
share a face. Finally, by considering the distance

d∂Ω(x, y) = min{|x− y|, d(x, ∂Ω) + d(y, ∂Ω)},

we construct our approximation close to ∂Ω, using minimal connections defined
in terms of this distance. This process yields a closed polyhedral 1-dimensional
current νε, or, more precisely, a sum in the sense of currents of Lipschitz curves,
that approximates well the vorticity µ(uε, Aε) in a suitable norm.

We may now state our main results.
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Theorem 1.1 (ε-level estimates for Ginzburg-Landau in 3D). Assume that ∂Ω is
of class C2. For any m,n,M > 0 there exist C, ε0 > 0 depending only on m,n,M,
and ∂Ω, such that, for any ε < ε0, if (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3) is a configu-
ration such that Fε(uε, Aε) ≤M | log ε|m then there exists a polyhedral 1-dimensional
current νε such that

(1) νε/π is integer multiplicity,
(2) ∂νε = 0 relative to Ω,
(3) supp(νε) ⊂ Sνε ⊂ Ω with |Sνε| ≤ C| log ε|−q, where q(m,n) := 3

2
(m+ n),

(4)

(1.1)

∫
Sνε

|∇Aεuε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2

≥ |νε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− C

| log ε|n
,

(5) and for any γ ∈ (0, 1] there exists a constant Cγ depending only on γ and ∂Ω,
such that

(1.2) ‖µ(uε, Aε)− νε‖C0,γ
T (Ω)∗ ≤ Cγ

Fε(uε, Aε) + 1

| log ε|qγ
.

Notation and definitions of the objects and spaces involved in this result can be
found in the preliminaries (see Section 2).

Remark 1.1. Alternatively, the right-hand sides of the lower bound and the vorticity
estimate can be expressed in terms of the free energy Fε(uε, Aε) of the configuration
(uε, Aε) and a length δ = δ(ε), which measures how “close” µε(uε, Aε) is to νε, and
which is a parameter of the construction (the side-length of the aforementioned grid).
This will be done in the rest of the paper.

We also remark that the right-hand side of (1.2) can be made small if n >

m
(

2
3γ
− 1
)

.

The technical assumption that ∂Ω is of class C2 allows us to find a lower bound
for the free energy close to the boundary of the domain. If ∂Ω is only assumed to
be Lipschitz, one has the following result.

Theorem 1.2. For any m,n,M > 0 there exist C, ε0 > 0 depending only on m,n,
and M , such that, for any ε < ε0, if (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3) is a configu-
ration such that Fε(uε, Aε) ≤M | log ε|m then, letting q := 3

2
(m+ n) and defining

Ωε := {x ∈ Ω | d(x, ∂Ω) ≥ 2| log ε|−q},

there exists a polyhedral 1-dimensional current νε such that

(1) νε/π is integer multiplicity,
(2) ∂νε = 0 relative to Ω,
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(3) supp(νε) ⊂ Sνε ⊂ Ω with |Sνε| ≤ C| log ε|−q,
(4)∫

Sνε

|∇Aεuε|2+
1

2ε2
(1−|uε|2)2+| curlAε|2 ≥ |νε|(Ωε)

(
log

1

ε
− C log log

1

ε

)
− C

| log ε|n
,

(5) and for any γ ∈ (0, 1] there exists a constant Cγ depending only on γ and ∂Ω,
such that

‖µ(uε, Aε)− νε‖C0,γ
0 (Ω)∗ ≤ Cγ

Fε(uε, Aε) + 1

| log ε|qγ
.

As a direct consequence of Theorem 1.1, we recover and improve within our work
setting, a well known result concerning the convergence as ε→ 0 of the vorticity of
families of configurations whose free energy is bounded above by a constant times
a power of | log ε|. Results of the same kind can be found in [JS02, JMS04, SS04,
ABO05,BJOS12].

Corollary 1.1. Assume that ∂Ω is of class C2. Let {(uε, Aε)}ε be a family of
configurations of H1(Ω,C)×H1(Ω,R3) such that Fε(uε, Aε) ≤ M | log ε|m for some
m ≥ 1 and M > 0. Then, up to extraction,

µ(uε, Aε)

| log ε|m−1
⇀ µ in C0,γ

T (Ω)∗

for any γ ∈ (0, 1], where µ is a 1-dimensional current such that µ/π is integer
multiplicity and ∂µ = 0 relative to Ω. If m = 1 then µ is in addition rectifiable.
Moreover,

lim inf
ε→0

Fε(uε, Aε)

| log ε|m
≥ |µ|(Ω).

1.3. Application to the full Ginzburg-Landau functional. The behavior of
global minimizers for GLε is determined by the strength of the external magnetic
field Hex. This model is known to exhibit several phase transitions, which occur
for certain critical values of the intensity of Hex. We are interested in the so-called
first critical field, usually denoted by Hc1 . Physically, it is characterized as follows.
Below Hc1 the superconductor is everywhere in its superconducting phase |u| ≈ 1
and the external magnetic field is forced out by the material. This phenomenon is
known as the Meissner effect. At Hc1 , which is of the order of | log ε| as ε → 0,
the first vortice(s) appear and the external magnetic field penetrates the material
through the vortice(s).

In the works [Ser99, SS00a, SS03, SS07], Sandier and Serfaty derived with high
precision the value of the first critical field and rigorously described the behavior
of global minimizers of GLε below and near Hc1 in 2D. In the 3D setting, Alama,
Bronsard, and Montero [ABM06] identified a candidate expression for Hc1 in the
case of the ball. Then, Baldo, Jerrard, Orlandi, and Soner [BJOS13], characterized
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to leading order the first critical field in 3D for a general bounded domain. In
[Rom19], using crucially the ε-level estimates in Theorem 1.1, we computed Hc1

with higher precision and characterized the behavior of global minimizers for the
full three dimensional Ginzburg-Landau energy below and near this value.

Since magnetic monopoles do not exist in Maxwell’s electromagnetism theory, we
may assume that Hex ∈ L2

loc(R3,R3) is divergence-free. Then, there exists a vector
potential Aex ∈ H1

loc(R3,R3) such that

curlAex = Hex and divAex = 0 in R3.

Let us introduce the space

Hcurl := {A ∈ H1
loc(R3,R3) | curlA ∈ L2(R3,R3)}.

The functionalGLε(u,A) is well defined for any pair (u,A) ∈ H1(Ω,C)×[Aex+Hcurl].
The following result is a direct consequence of Theorem 1.1.

Corollary 1.2. Theorem 1.1 holds true if the hypothesis that (uε, Aε) ∈ H1(Ω,C)×
H1(Ω,R3) is a configuration such that F (uε, Aε) ≤ M | log ε|m is replaced with the
assumption that (uε, Aε) ∈ H1(Ω,C) × [Aex + Hcurl] is a configuration such that
GLε(uε, Aε) ≤M | log ε|m.

Remark 1.2. In particular, this result holds true if (uε, Aε) is a minimizing config-
uration for GLε in H1(Ω,C)× [Aex +Hcurl] and ‖Hex‖2

L2(R3,R3) ≤M | log ε|m. Indeed,

this follows by observing that

GLε(uε, Aε) = inf
H1(Ω,C)×[Aex+Hcurl]

GLε(u,A) ≤ GLε(1, Aex) =

∫
Ω

|Aex|2 ≤ C‖Hex‖2
L2(R3,R3)

for some universal constant C.

1.4. A quantitative product estimate for the study of Ginzburg-Landau
dynamics. In this section, we consider the special case Ω = (0, T )×ω, with T > 0
and ω ⊂ R2, i.e. we deal with configurations (uε, Aε) which depend both on space
and time. We use coordinates (t, x1, x2) in three-space and denote ∇ = (∂x1 , ∂x2),
∇⊥ = (−∂x2 , ∂x1). We consider gauges of the form

Aε = (Φε, Bε),

where Φε : (0, T )× ω → R and Bε : (0, T )× ω → R2. By using the notation

X⊥ = (−X2, X1), curlX = ∂x1X2 − ∂x2X1

for vector fields X in the plane, we observe that

curlAε = (curlBε, ∂tB
⊥
ε −∇⊥Φε).

As above, the vorticity in three-space is defined by

µ(uε, Aε) := curl(〈∂tuε − iΦεuε, iuε〉+ Φε, 〈∇uε − iBεuε, iuε〉+Bε).
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This can be written as

µ(uε, Aε) = (Jε, Vε),

where

Jε := curl〈∇uε, iuε〉+ curl(1− |uε|)2Bε

is the space-only vorticity and

Vε := 2〈i∂tuε,∇⊥uε〉+ ∂t(1− |uε|2)B⊥ε −∇⊥(1− |uε|2)Φε

is the velocity. Since ∂µ(uε, Aε) relative to Ω, we have the relation

∂tJε + div Vε = 0,

which means that the vorticity Jε is transported by Vε, hence the name velocity.
We let Mε be a quantity such that

(1.3) ∀q > 0, lim
ε→0

Mεε
q = 0, lim

ε→0

log ε

M q
ε

= 0, and lim
ε→0

logMε

log ε
= 0.

For example Mε = e
√
| log ε| will do. Under the hypothesis of Theorem 1.2, our

construction provides an approximation for the vorticity in three-space, which in
particular yields an approximation for the velocity Vε and for the space-only vor-
ticity Jε. This combined with ideas from [SS04, Ser17], yields a quantitative three
dimensional product estimate, which allows one to control the velocity.

Theorem 1.3. Assume ω to be Lipschitz and let Mε be as above. Consider a
function f ∈ C0,1

0 ([0, T ] × ω) and a spatial vector field X ∈ C0,1
0 ([0, T ] × ω). For

any m,n,M,Λ > 0 with n > 1
3
(2 − m) there exist a universal constant C > 0

and ε0 > 0 depending only on m,n,M,Λ, f and X, such that, for any ε < ε0,
if (uε, Aε) = (uε, (Φε, Bε)) ∈ H1(Ω,C) × H1(Ω,R3) is a configuration such that
Fε(uε, Aε) ≤M | log ε|m then∫

(0,T )×ω

|f |2

Λ
|∂tuε − iuεΦε|2 +

∫
(0,T )×ω

Λ|X · (∇uε − iuεBε)|2

≥ (| log ε| − C logMε)

∣∣∣∣∫
(0,T )×ω

fνε ∧ (−X2dx1 +X1dx2)

∣∣∣∣
− C

∫
(0,T )×ω

max(|νε ∧ dx1|, |νε ∧ dx2|) +O
(
| log ε|−

1
2

(m+3n)+1
)
,

where νε is the polyhedral 1-dimensional current νε associated to (uε, Aε) by Theorem
1.2.

Remark 1.3. By choosing

Λ =

( ∫
(0,T )×ω |f |

2|∂tuε − iuεΦε|2∫
(0,T )×ω |X · (∇uε − iuεBε)|2

)1/2

,



THREE DIMENSIONAL ESTIMATES FOR GINZBURG-LANDAU 9

one obtains a left-hand side in the form of a product (plus error terms), hence the
name product estimate. It is worth mentioning that the dependence of ε in terms of
Λ, f, and X can be found in the proof (see Section 9).

1.5. A word about the proof of the main results. The subtle point of the
proof is to obtain a lower bound for the free energy at the ε-level. Here is where
minimal connections play a role. The idea of obtaining lower bounds for Ginzburg-
Landau energies via the use of minimal connections was first introduced in [San01],
in the case of the energy without magnetic field Eε(u). When trying to apply this
kind of method to obtain lower bounds for the full functional GLε(u,A), the main
obstacle is that as soon as the external magnetic field is of the order of the first
critical field, the number of vortices is a priori unbounded as ε → 0. The main
challenge in getting a lower bound that works at the ε-level is thus to keep track
of the dependence of all the estimates on ε and δ(ε), taking into account that the
number of vortex filaments may be unbounded.

Our method goes as follows: the choice of grid allows us to show that the re-
striction of the vorticity to the boundary of a cube C can be well approximated
by

2π

(
k∑
i=1

δpi −
k∑
i=1

δni

)
,

where the points pi’s are the (non-necessarily distinct) positive singularities and the
points ni’s are the (non-necessarily distinct) negative singularities. We remark that
the number of points and their locations depend on ε.

By [BCL86], we know that there exists a 1-Lipschitz function ζ : R3 → R3 such
that

k∑
i=1

ζ(pi)−
k∑
i=1

ζ(ni) = L(A ),

where L(A ) is the length of the minimal connection associated to the configuration
of points A = {p1, . . . , pk, n1, . . . , nk}. Since |∇ζ| ≤ 1, the co-area formula gives∫

C

eε(uε) ≥
∫

C

eε(uε)|∇ζ| ≥
∫
t∈R

∫
Σt

eε(uε)dH2dt,

where eε(uε) = 1
2
|∇uε|2 + 1

4ε2
(1− |uε|2)2 and Σt = {ζ = t} ∩ C .

At this point, a vortex ball construction on a surface is necessary. Roughly speak-
ing, if Σt is nice enough and |uε| ≥ 1/2 on ∂Σt, we expect∫

Σt

eε(uε)dH2 ≥ πdeg(uε/|uε|, ∂Σt)

(
log

1

ε
−O(log | log ε|)

)
.

It turns out that, for most t’s, we have

deg(uε/|uε|, ∂Σt) = #{i | ζ(pi) > t} −#{i | ζ(ni) > t}.
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By noting that∫
t∈R

#{i | ζ(pi) > t}−#{i | ζ(ni) > t}dt =
k∑
i=1

ζ(pi)−
k∑
i=1

ζ(ni) = L(A ) ≈ 1

2π
|νε|(C ),

we are led to∫
C

eε(uε) ≥
1

2
|νε|(C )

(
log

1

ε
−O(log | log ε|)

)
+ small error.

Unfortunately, we cannot really use the function ζ in the previous argument, because
its regularity is not sufficient to apply the ball construction on most of its level
sets. To bypass this issue, we construct a smooth approximation of this function.
The difficulties appear when trying to control the errors involved in the previously
described method, because a quantitative bound of the second fundamental form of
most of the level sets of our smooth approximation of the function ζ is needed.

In a similar but more involved way, by assuming that ∂Ω is of class C2, we can
obtain a lower bound close to the boundary of the domain.

It is worth mentioning that by density arguments we can assume without loss of
generality that u and A are of class C1 in some proofs of this paper.

Outline of the paper. The paper is organized as follows.
In Section 2 we introduce some basic objects and spaces that are used throughout

the paper, we recall some facts from the theory of currents and differential forms,
and we describe the choice of grid.

In Section 3 we provide the ball construction method on a surface, which is one
of the key tools used to obtain the lower bound for the free energy.

In Section 4 we show a 2D vorticity estimate. The main difference with classical
results of the same kind is the space in which we prove the estimate.

In Section 5 we start by reviewing the concept of minimal connection. Then, we
introduce the function ζ and the function ζ for d∂Ω, and state three technical propo-
sitions concerning quantitative smooth approximations of these functions. Finally,
we present our 3D vortex approximation construction.

Section 6 is devoted to the proof of a lower bound for the energy without magnetic
field in the union of cubes of the grid, while in Section 7 we provide a similar estimate
near the boundary of the domain. In these proofs we crucially use the results of
Section 3 and Section 5.

In Section 8 we present the proofs of Theorem 1.1 and Theorem 1.2, which use
the lower bounds obtained in Section 6 and Section 7, as well as the 2D vorticity
estimate of Section 4.

In Section 9 we prove the quantitative product estimate for the study of Ginzburg-
Landau dynamics.
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In Appendix A we construct a quantitative smooth approximation of the function
ζ. In Appendix B and Appendix C, we present two different methods to do the
same for the function ζ for d∂Ω. These are the most technical parts of the paper.

2. Preliminaries

It is useful to introduce certain concepts and notation from the theory of currents
and differential forms. We recall that in Euclidean spaces vector fields can be iden-
tified with 1-forms. Indeed, the vector field F = (F1, F2, F3) can be identified with
the 1-form F1dx1 + F2dx2 + F3dx3. We use the same notation for both the vector
field and the 1-form.

It is also convenient to recall that a vector field F satisfying the boundary con-
dition F × ν = 0 on ∂Ω, where hereafter ν denotes the outer unit normal to ∂Ω, is
equivalent to a 1-form F such that FT = 0 on ∂Ω. Here FT denotes the tangential
component of F on ∂Ω.

We define the superconducting current of a pair (u,A) ∈ H1(Ω,C) × H1(Ω,R3)
as the 1-form

j(u,A) = (iu, dAu) =
3∑

k=1

(iu, ∂ku− iAku)dxk.

This is related to the vorticity µ(u,A) of a configuration (u,A) through

µ(u,A) = dj(u,A) + dA.

Thus µ(u,A) is an exact 2-form in Ω acting on couples of vector fields (X, Y ) ∈
R3 ×R3 with the standard rule that dxi ∧ dxj(X, Y ) = XiYj −XjYi. It can also be
seen as a 1-dimensional current, which is defined through its action on 1-forms by
the relation

µ(u,A)(φ) =

∫
Ω

µ(u,A) ∧ φ.

We recall that the boundary of a 1-current T relative to a set Θ, is the 0-current
∂T defined by

∂T (φ) = T (dφ)

for all smooth compactly supported 0-form φ defined in Θ. In particular, an inte-
gration by parts shows that the 1-dimensional current µ(u,A) has zero boundary
relative to Ω. We denote by |T |(Θ) the mass of a 1-current T in Θ.

For α ∈ (0, 1] we let C0,α(Ω) denote the space of 1-forms φ such that ‖φ‖C0,α(Ω) <

∞. C0,α
0 (Ω) denotes the space of 1-forms φ ∈ C0,α(Ω) such that φ = 0 on ∂Ω, while

C0,α
T (Ω) denotes the space of 1-forms φ ∈ C0,α(Ω) such that φT = 0 on ∂Ω. The

symbol ∗ is used to denote the dual spaces.

We next recall the definition of topological degree.
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Definition 2.1. Let Σ be a complete oriented surface in R3. If Θ ⊂ Σ is a smooth
domain, and the map u : Σ → C does not vanish on ∂Θ, we can define the degree
deg(u/|u|, ∂Θ) of u restricted to ∂Θ to be the winding number of the map u/|u| :
∂Θ→ S1.

We observe that, because Σ is assumed to be oriented, ∂Θ carries a natural
orientation. In the case that ∂Θ is not smooth, the topological degree can still be
defined by approximation.

Hereafter Hd denotes the d-dimensional Hausdorff measure, for d ∈ N. When
meaningful, we sometimes use the notation

Fε(u,A,Θ) :=

∫
Θ

eε(u,A)dH2, Eε(u,Θ) :=

∫
Θ

eε(u)dH2,

with eε(u,A) := 1
2
|∇Au|2 + 1

4ε2
(1−|u|2)2 + | curlA|2, eε(u) := 1

2
|∇u|2 + 1

4ε2
(1−|u|2)2.

2.1. Choice of grid. Let us fix an orthonormal basis (e1, e2, e3) of R3 and consider
a grid G = G(a, δ) given by the collection of closed cubes Ci ⊂ R3 of side-length
δ = δ(ε) (conditions on this parameter are given in the lemma below). In the grid
we use a system of coordinates with origin in a ∈ Ω and orthonormal directions
(e1, e2, e3). From now on we denote by R1 (respectively R2) the union of all edges
(respectively faces) of the cubes of the grid. We have the following lemma.

Lemma 2.1 (Choice of grid). For any γ ∈ (−1, 1) there exist constants c0(γ), c1(γ) >
0, δ0(Ω) ∈ (0, 1) such that, for any ε, δ > 0 satisfying

ε
1−γ

2 ≤ c0 and c1ε
1−γ

4 ≤ δ ≤ δ0,

if (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a configuration such that Fε(uε, Aε) ≤ ε−γ

then there exists bε ∈ Ω such that the grid G(bε, δ) satisfies

(2.1a) |uε| > 5/8 on R1(G(bε, δ)) ∩ Ω,

(2.1b)

∫
R1(G(bε,δ))∩Ω

eε(uε, Aε)dH1 ≤ Cδ−2Fε(uε, Aε),

(2.1c)

∫
R2(G(bε,δ))∩Ω

eε(uε, Aε)dH2 ≤ Cδ−1Fε(uε, Aε),

where C is a universal constant.
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Proof. First, let us observe that, by the Cauchy-Schwarz inequality and the co-area
formula, we have

4Fε(uε, Aε) ≥
∫

Ω

|∇|uε||2 +
1

ε2
(1− |uε|2)2

≥
∫

Ω

|∇|uε||(1− |uε|2)

ε

=

∫ ∞
t=0

(∫
{|u|=t}

(1− t2)

ε
dH2

)
dt.

Define T := {t ∈ [5/8, 3/4] | Area({|uε| = t}) ≤ εα} for α := 1−γ
2

. From the previous
estimate we deduce that

|T | ≥ 1/8− Cε1−αFε(uε, Aε),

where hereafter C > 0 denotes a universal constant that may change from line to
line. It is easy to check that there exists a constant c0(γ) > 0 such that |T | > 0 for

any ε > 0 satisfying ε
1−γ

2 ≤ c0.
Fix a point a ∈ Ω and choose δ0 = δ0(Ω) ∈ (0, 1) such that {a + [0, δ]3} ⊂ Ω for

any 0 < δ < δ0. Fix t0 ∈ T and define

BI := {b ∈ {a+ [0, δ]3} | {|uε| = t0} ∩R1(G(b, δ)) 6= ∅}.

Let us show that |BI | ≤ Cδεα. We define, for any b ∈ {a+ [0, δ]3},

Γb1 = b+ R× (δZ)2, Γb2 = b+ (δZ)× R× (δZ), and Γb3 = b+ (δZ)2 × R.

In addition, we set

π1(x, y, z) = (y, z), π2(x, y, z) = (x, z), and π3(x, y, z) = (x, y).

Let us observe that, for any b1 ∈ {a1 + [0, δ]}, we have∫
(b2,b3)∈{(a2,a3)+[0,δ]2}

χ{(b2,b3) | Γb1∩{|uε|=t0}6=∅} ≤ Area(π1({|uε| = t0})).

Therefore,∫
b1∈{a1+[0,δ]}

∫
(b2,b3)∈{(a2,a3)+[0,δ]2}

χ{(b2,b3) | Γb1∩{|uε|=t0}6=∅} ≤ δArea(π1({|uε| = t0})).

Analogously, we have∫
b2∈{a2+[0,δ]}

∫
(b1,b3)∈{(a1,a3)+[0,δ]2}

χ{(b1,b3) | Γb2∩{|uε|=t0}6=∅} ≤ δArea(π2({|uε| = t0}))

and∫
b3∈{a3+[0,δ]}

∫
(b1,b2)∈{(a1,a2)+[0,δ]2}

χ{(b1,b2) | Γb3∩{|uε|=t0}6=∅} ≤ δArea(π3({|uε| = t0})).
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We deduce that

|BI | ≤ δ

3∑
i=1

Area(πi({|uε| = t0})) ≤ CδArea({|uε| = t0}) ≤ Cδεα.

Let us now observe that, for any b ∈ {a+ [0, δ]3} \BI ,

either |uε| > t0 or |uε| < t0 on R1(G(b, δ)) ∩ Ω.

We let

BII :=
{
b ∈ {a+ [0, δ]3} \BI | {|uε| < t0} ∩R1(G(b, δ) 6= ∅

}
and observe that, for every b ∈ BII , we have (1−|uε|2) ≥ (1− t20). This implies that

(1− t20)2

4ε2
|BII | ≤

∫
b∈BII

∫
R1(G(b,δ))∩Ω

eε(uε, Aε)dH1dL(b) ≤ Fε(uε, Aε),

and thus |BII | ≤ Cε2Fε(uε, Aε).
Now, we define Bgood := {a+ [0, δ]3} \ (BI ∪BII). Observe that

|Bgood| ≥ δ3 − C(δεα + ε2−γ)

and that there exists a constant c1 > 0 such that |Bgood| ≥ δ3/2 for any ε, δ > 0
satisfying c1ε

α
2 ≤ δ. Moreover, for any b ∈ Bgood, we have

|uε| > t0 on R1(G(b, δ)) ∩ Ω.

Next, using a mean value argument we choose b = bε ∈ Bgood in such a way that∫
Rn(G(bε,δ))∩Ω

eε(uε, Aε)dHn ≤ Cδn−3Fε(uε, Aε) for n = 1, 2.

First, by [ABO05, Lemma 8.4] there exists bε ∈ Bgood such that, for n = 1, 2,∫
Rn(G(bε,δ))∩Ω

eε(uε, Aε)dHn ≤ 2

|Bgood|

∫
Bgood

∫
Rn(G(b,δ))∩Ω

eε(uε, Aε)dHndL(b).

Second, arguing as in the proof of [ABO05, Lemma 3.11], we have

1

δ3

∫
{a+[0,δ]3}

δ3−n
∫

Rn(G(b,δ))∩Ω

eε(uε, Aε)dHndL(b) = CFε(uε, Aε) for n = 1, 2.

Then, we deduce that∫
Rn(G(bε,δ))∩Ω

eε(uε, Aε)dHn ≤ C
δ3

|Bgood|
δn−3Fε(uε, Aε) for n = 1, 2.

Recalling that |Bgood| ≤ δ3/2, the lemma follows. �
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From now on we drop the cubes of the grid G(bε, δ), given by Lemma 2.1, whose
intersection with R3 \ Ω is non-empty. We also define

(2.2) Θ := Ω \ ∪Cl∈GCl and ∂G := ∂ (∪Cl∈GCl) .

Observe that, in particular, ∂Θ = ∂G ∪ ∂Ω.
We remark that G(bε, δ) carries a natural orientation. The boundary of every

cube of the grid will be oriented accordingly to this orientation. Each time we refer
to a face ω of a cube C , it will be considered to be oriented with the same orientation
of ∂C . If we refer to a face ω ⊂ ∂G, then the orientation used is the same of ∂G.

3. The ball construction method on a surface

In this section we use the method of Jerrard introduced in [Jer99] in order to
construct balls containing all the zeros of u on a surface. This allows us to obtain
a lower bound for the energy without magnetic field. The construction given here
follows the one made by Sandier in [San01] that corresponds to an adaptation of
the method of Jerrard. More precisely, our result extends [San01, Proposition 3.5],
which deals with the case of a bounded number of vortices, to the situation in which
the number of vortices is (a priori) unbounded as ε→ 0.

Proposition 3.1. Let Σ̃ be a complete oriented surface in R3 whose second fun-
damental form is bounded by 1. Let Σ be a bounded open subset of Σ̃. For any
m,M > 0 there exists ε0(m,M) > 0 such that, for any ε < ε0, if uε ∈ H1(Σ,C)
satisfies

(3.1) Eε(uε,Σ) ≤M | log ε|m

and

(3.2) |u(x)| ≥ 1

2
if d(x, ∂Σ) < 1,

where d(·, ·) denotes the distance function in Σ̃, then, letting d be the winding number
of uε/|uε| : ∂Σ→ S1 and Mε = M | log ε|m, we have

Eε(uε,Σ) ≥ π|d|
(

log
1

ε
− logMε

)
.

To prove Proposition 3.1 we follow almost readily the proofs of [Jer99] and [San01].

3.1. Main steps. Let us define the essential null set SE(uε) of uε to be the union of
those connected components Ui of {x | |uε(x)| < 1/2} such that deg(uε/|uε|, ∂Ui) 6=
0.

In the rest of this section each time we refer to a ball B of radius r we mean a
geodesic ball of radius r in Σ̃.
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First, we include SE(uε) in the union of well-chosen disjoint “small” balls Bi of
radii ri > ε such that

Eε(uε, Bi) ≥
ri
Cε

,

where the constant C does not depend on the second fundamental form of Σ when
it is assumed to be bounded by 1. This is possible according to the following lemma.

Lemma 3.1. Under the hypotheses of Proposition 3.1, there exist C, r0 > 0 such
that, for any ε > 0, there exist disjoint balls B1, . . . , Bk of radii ri such that

(1) ri ≥ ε for all i ∈ {1, . . . , k}.
(2) SE(u) ⊂ ∪iBi and Bi ∩ SE(u) 6= ∅ for all i ∈ {1, . . . , k}.
(3) For all i ∈ {1, . . . , k},

Eε(uε, Bi ∩ Σ) ≥ min{ri, r0, 1}
Cε

.

Then the proof involves dilating the balls Bi into balls B′i by combining them with
annuli. A lower bound for Eε(uε, B

′
i) is obtained by combining the lower bound for

Eε(uε, Bi) and a lower bound for Eε(uε, B
′
i \Bi).

Lemma 3.2. Under the hypotheses of Proposition 3.1, there exist C, ε0, r0 > 0 such
that, for any 0 < ε < s < r < r0, if Br, Bs ⊂ Σ are two concentric balls and if
SE(uε) ∩ (Br \Bs) = ∅ then, letting d := deg(uε/|uε|, ∂Br),

Eε(uε, Br \Bs) ≥ |d|
(

Λε

(
r

|d|

)
− Λε

(
s

|d|

))
,

where Λε : R+ → R+ is a function that satisfies the following properties:

(1) Λε(t)/t is decreasing.
(2) supt∈R+

Λε(t)/t ≤ 1/(Cε).
(3) If 0 < ε < ε0 and ε < t < r0 then∣∣∣∣Λε(t)− π log

t

ε

∣∣∣∣ ≤ C.

By taking into consideration the following adaptation of [San01, Lemma 3.12], the
proofs of the previous two lemmas are straightforward modifications of the proofs
of [San01, Lemma 3.8] and of [San01, Lemma 3.9].

Lemma 3.3. Let St(x) denote the geodesic circle in Σ̃ of radius t centered at x ∈ Σ.
Under the hypotheses of Proposition 3.1, there exist C, ε0, r0 > 0 such that, for any
x ∈ Σ and for any ε, t > 0 satisfying ε < ε0 and ε < t < r0, if |uε| ≤ 1 on St(x)
then

Eε(uε, St(x)) ≥ πm2

(
|d|
t
− C

)+

+
(1−m)C

Cε
,
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where m := inf
y∈St
|uε(y)| and

d :=

{
deg(uε/|uε|, St(x)) m 6= 0,

0 m = 0.

Proof. By observing that the constants r0, r, and C involved in (B.8), (B.9), and
(B.12) in the proof of [San01, Lemma 3.12] can be chosen independently of the
second fundamental form of Σ̃ when it is assumed to be bounded by 1, then the
proof is verbatim the same as that of [San01, Lemma 3.2]. �

Lemma 3.1 and Lemma 3.2 allow one to prove the following result, whose proof
is a straightforward modification of the proof of [San01, Proposition 3.10].

Proposition 3.2. For any ε > 0, let {Bi}i be the family of balls of radii ri given
by Lemma 3.1. Let

di :=

{
deg(uε/|uε|, ∂Bi) if Bi ⊂ Σε,

0 otherwise,

and

t0 := min
{i | di 6=0}

ri
|di|

(with t0 := +∞ if di = 0 for every i).

Then, for any t ≥ t0, there exists a family of disjoint geodesic balls B1(t), . . . , Bk(t)(t)

of radii ri(t) in Σ̃ such that

(1) SE(u) ⊂ ∪iBi(t) and SE(u) ∩Bi(t) 6= ∅ for all i ∈ {1, . . . , k(t)}.
(2) For all i ∈ {1, . . . , k(t)}, if Bi(t) ⊂ Σ then ri(t) ≥ t|di(t)|, where

di(t) := deg(uε/|uε|, ∂Bi(t)).

(3) For all i ∈ {1, . . . , k(t)},

Eε(uε, Bi(t) ∩ Σ) ≥ min{ri(t), r0, 1}
Λε(t)

t
.

Proof of Proposition 3.1. We assume that d 6= 0, otherwise the result is trivial.
Apply Lemma 3.1, call the resulting balls B1, . . . , Bk, and call r1, . . . , rk their radii.
From Lemma 3.1 and (3.1), we have

min{ri, r0, 1} ≤ CεEε(uε, Bi ∩ Σ) ≤ CεMε ≤ Cε| log ε|m,

where throughout the proof C = C(M) > 0 denotes a constant that may change
from line to line. We deduce that there exists ε0(m,M) > 0 such that, for any
i ∈ {1, . . . , k} and for any ε < ε0,

(3.3) ri = min{ri, r0, 1} ≤ CεMε and ri ≤
1

2
.
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Since d(SE(uε), ∂Σ) < 1, which follows from (3.2), and Bi∩SE(uε) 6= 0, we conclude
that Bi ⊂ Σ. Thus

(3.4)
k∑
i=1

deg(uε/|uε|, Bi) = d 6= 0.

As in Proposition 3.2, let

t0 = min
{i | di 6=0}

ri
|di|

.

From (3.3) and (3.4), we get that t0 ≤ CεMε. Fix α ∈ (0, 1) with α < m. By reduc-
ing the constant ε0, we deduce that t0 ≤M−1

ε | log ε|α for any ε < ε0. Therefore, we
may apply Proposition 3.2 with t = M−1

ε | log ε|α. This yields balls B1(t), . . . , Bk(t)(t)
with radii ri(t) and degrees di(t) such that

min{ri(t), r0, 1} ≤ Eε(uε, Bi(t) ∩ Σ)
t

Λε(t)
.

From Lemma 3.2, we have

ri(t) = min{ri(t), r0, 1} ≤Mε
M−1

ε | log ε|α

C| log ε|
≤ C| log ε|α−1.

Once again, since d(SE(uε), ∂Σ) < 1 (recall (3.2)) and Bi(t)∩SE(u) 6= ∅, by possibly
further reducing the constant ε0, we deduce that Bi(t) ⊂ Σ for any i ∈ {1, . . . , k(t)}
and for any ε < ε0. Hence d =

∑k(t)
i=1 di(t). Then, from Proposition 3.2, ri(t) ≥

t|di(t)| and therefore

Eε(uε,Σ) ≥
k(t)∑
i=1

|di(t)|Λε(t).

Since
∑k(t)

i=1 |di(t)| ≥ |d| and t < r0 if ε is small enough (recall that α < m), Lemma
3.2 implies that, for any ε < ε0, for a possibly smaller ε0,

Eε(u,Σ) ≥ π|d|
(

log
t

ε
− C

)
≥ π|d|

(
log

1

ε
− logMε

)
.

The proposition is proved. �

Corollary 3.1. Let Σ̃ be a complete oriented surface in R3 whose second fundamen-
tal form is bounded by Qε = Q| log ε|q, where q,Q > 0 are given numbers. Let Σ be
a bounded open subset of Σ̃. For any m,M > 0 there exists ε0(m, q,M,Q) > 0 such
that, for any ε < ε0, if uε ∈ H1(Σ,C) satisfies

Eε(uε,Σ) ≤M | log ε|m

and

(3.5) |u(x)| ≥ 1

2
if d(x, ∂Σ) < Q−1

ε ,
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where d(·, ·) denotes the distance function in Σ̃, then, letting d be the winding number
of uε/|uε| : ∂Σ→ S1 and Mε = M | log ε|m we have

Eε(uε,Σ) ≥ π|d|
(

log
1

ε
− logMεQε

)
.

Proof. Let us consider the transformation

ũε(y) = uε

(
y

Qε

)
for y ∈ Σε := QεΣ.

We let Σ̃ε := QεΣ̃. Observe that, by a change of variables, we have

Eε(uε,Σ) = Eε̃(ũε,Σε),

where ε̃ := εQε. It is easy to check that the second fundamental form of Σ̃ε is
bounded by 1. Then a direct application of Proposition 3.1 shows that

Eε(uε,Σ) = Eε̃(ũε,Σε) ≥ π|d|
(

log
1

ε̃
− logMε

)
= π|d|

(
log

1

ε
− logMεQε

)
for any 0 < ε < ε1 = ε0Q

−1
ε , where ε0 is the constant appearing in the proposition.

�

4. A 2D vorticity estimate

Let ω be a two dimensional domain. For a given function u : ω → C and a given
vector field A : ω → R2 we define

j(u,A) = (iu,∇Au), µ(u,A) = dj(u,A) + dA.

We also let

Fε(u,A, ω) =

∫
ω

eε(u,A), Fε(u,A, ∂ω) =

∫
∂ω

eε(u,A)dH1,

where

eε(u,A) = |∇Au|2 +
1

2ε2
(1− |u|2)2 + | curlA|2.

We have the following 2D vorticity estimate.

Theorem 4.1. Let ω ⊂ R2 be a bounded domain with Lipschitz boundary. Let
u : ω → C and A : ω → R2 be C1(ω) and such that |u| ≥ 5/8 on ∂ω. Let
{Uj}j∈J be the collection of connected components of {|1−|u(x)|| ≥ 1/2} and {Si}i∈I
denote the collection of connected components of {|u(x)| ≤ 1/2} whose degree di =
deg(u/|u|, ∂Si) 6= 0. Then, letting r =

∑
j∈J diam(Uj) and assuming ε, r ≤ 1, we

have

(4.1)

∥∥∥∥∥µ(u,A)− 2π
∑
i∈I

diδai

∥∥∥∥∥
C0,1(ω)∗

≤ C max(ε, r)(1+Fε(u,A, ω)+Fε(u,A, ∂ω)),

where ai is the centroid of Si and C is a universal constant.
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Proof. As in [SS07, Chapter 6], we set χ : R+ → R+ to be defined by
χ(x) = 2x if x ∈

[
0, 1

2

]
χ(x) = 1 if x ∈

[
1
2
, 3

2

]
χ(x) = 1 + 2

(
x− 3

2

)
if x ∈

[
3
2
, 2
]

χ(x) = x if x ∈ [2,+∞).

We then set ũ : ω → C by

ũ(x) =
χ(|u|)
|u|

u

and let

j̃ := (iũ, dAũ) , µ̃ := dj̃ + dA.

Step 1. Let us prove that

‖µ(u,A)− µ̃‖C0,1(ω)∗ ≤ Cε(Fε(u,A, ω) + Fε(u,A, ∂ω)).

In fact, by integration by parts, for any function ζ ∈ C0,1(ω), we have∣∣∣∣∫
ω

ζ(µ(u,A)− µ̃)

∣∣∣∣ ≤ ∣∣∣∣∫
ω

(
∇ζ)⊥ · (j(u,A)− j̃

)∣∣∣∣+

∣∣∣∣∫
∂ω

ζ
(
j(u,A)− j̃

)
· ϑ⊥

∣∣∣∣ ,
where ϑ is the outer unit normal to ∂ω and x⊥ = (−x2, x1) for any vector x =
(x1, x2). Arguing as in [SS07, Lemma 6.2], we get∣∣∣∣∫

ω

(
∇ζ)⊥ · (j(u,A)− j̃

)∣∣∣∣ ≤ ‖∇ζ‖L∞(ω)

∫
ω

||u|2 − |ũ|2|
|u|

|∇Au|

≤ 3‖∇ζ‖L∞(ω)

∫
ω

|1− |u|||∇Au|

≤ C‖∇ζ‖L∞(ω)εFε(u,A, ω).

Since |u| ≥ 5/8 on ∂ω, a simple computation shows that∣∣j(u,A)− j̃
∣∣ ≤ 2(1− |u|2) |∇Au| on ∂ω.

By the Cauchy-Schwarz inequality, we find∣∣∣∣∫
∂ω

ζ
(
j(u,A)− j̃

)
· ϑ⊥

∣∣∣∣ ≤ 2‖ζ‖C0,1(ω)

∫
∂ω

(1− |u|2) |∇Au| dH1

≤ C‖ζ‖C0,1(ω)εFε(u,A, ∂ω).

Thus,

‖µ(u,A)− µ̃‖C0,1(ω)∗ ≤ Cε(Fε(u,A, ω) + Fε(u,A, ∂ω))

for some universal constant C.

Step 2. By Step 1, the proof reduces to showing that∥∥∥∥∥µ̃− 2π
∑
i∈I

diδai

∥∥∥∥∥
C0,1(ω)∗

≤ C max(r, ε)(1 + Fε(u,A, ω) + Fε(u,A, ∂ω)).
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Observe that j̃+A = (iũ, dũ) and µ̃ = 0 whenever |ũ| = 1, i.e. when |1−|u|| ≤ 1/2.
In particular ∫

{|1−|u||≤1/2}
µ̃ = 0.

On the other hand, for any j ∈ J , Stokes’ theorem yields∫
Uj

µ̃ =

∫
∂Uj

(iũ,∇ũ) · τ = 2πdj,

where dj = deg(u/|u|, ∂Uj) and τ denotes the unit tangent vector to ∂Uj. By
definition of the collection {Si}i∈I , we have∑

j∈J

∫
Uj

µ̃ =
∑
i∈I

∫
Si

µ̃ =
∑
i∈I

2πdi.

Let ζ ∈ C0,1(ω). From the previous computations, we deduce that∫
ω

ζµ̃ =
∑
j∈J

∫
Uj

ζµ̃ =
∑
i∈I

ζ(ai)

∫
Si

µ̃+
∑
j∈J

∫
Uj

(ζ − ζ(aj))µ̃,

where aj denotes the centroid of Uj. Besides,∑
i∈I

ζ(ai)

∫
Si

µ̃ = 2π
∑
i∈I

diζ(ai) = 2π
∑
i∈I

di

∫
ω

ζδai .

Let us note that, since ζ is a Lipschitz function, we have

|ζ(x)− ζ(aj)| ≤ ‖ζ‖C0,1(ω)|x− aj| ≤ ‖ζ‖C0,1(ω)diam(Uj)

for all x ∈ Uj.
On the other hand, observing that

µ̃ = 2(∂x1ũ− iAx1ũ)× (∂x2ũ− iAx2ũ) + curlA,

we deduce that |µ̃| ≤ 2|∇Au|2 + | curlA|. Then, letting Fε(u,A, Uj) =

∫
Uj

eε(u,A),

the Cauchy-Schwarz inequality gives∫
Uj

|µ̃| ≤ 4
(
Fε(u,A, Uj) + |Uj|

1
2Fε(u,A, Uj)

1
2

)
.

Observe that |Uj| ≤ Cdiam(Uj)
2. Collecting our previous computations, we find∣∣∣∣∣∑

i∈I

∫
Si

(ζ − ζ(ai))µ̃

∣∣∣∣∣ ≤ Cr‖ζ‖C0,1(ω)

(
Fε(u,A, ω) + rFε(u,A, ω)

1
2

)
.

Remembering that
√
x ≤ 1 + x, we get∣∣∣∣∣

∫
ω

ζµ̃− 2π
∑
i∈I

di

∫
ω

ζδai

∣∣∣∣∣ ≤ Cr‖ζ‖C0,1(ω) (1 + Fε(u,A, ω)) .
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This concludes the proof of (4.1). �

Given a two dimensional Lipschitz domain ω ⊂ Ω, we let (s, t, 0) denote coordi-
nates in R3 such that ω ⊂ {(s, t, 0) ∈ Ω}. We define µε := µε(u,A)[∂s, ∂t], and write
µε,ω its restriction to ω. Theorem 4.1 immediately yields the following corollary.

Corollary 4.1. Let γ ∈ (0, 1) and assume that (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3) is
a configuration such that Fε(uε, Aε) ≤ ε−γ, so that by Lemma 2.1 there exists a grid
G(bε, δ) satisfying (2.1). Then there exists ε0(γ) such that, for any ε < ε0 and for
any face ω ⊂ R2(G(bε, δ)) of a cube of the grid G(bε, δ), letting {Uj,ω}j∈Jω be the
collection of connected components of {x ∈ ω | |1 − |uε(x)|| ≥ 1/2} and {Si,ω}i∈Iω
denote the collection of connected components of {x ∈ ω | |uε(x)| ≤ 1/2} whose
degree di,ω := deg(uε/|uε|, ∂Si,ω) 6= 0, we have∥∥∥∥∥µε,ω − 2π

∑
i∈Iω

di,ωδai,ω

∥∥∥∥∥
C0,1(ω)∗

≤

C max(rω, ε)

(
1 +

∫
ω

eε(uε, Aε)dH2 +

∫
∂ω

eε(uε, Aε)dH1

)
,

where ai,ω is the centroid of Si,ω, rω :=
∑

j∈Jω diam(Uj,ω), and C is a universal
constant.

In view of the previous corollary, it is important to bound from above rω, di,ω,
and |Iω|. Prior to doing so, let us recall the following result adapted from [Jer99].

Lemma 4.1. Under the hypotheses of Corollary 4.1, there exists ε0(γ) such that, for
any ε < ε0 and for any face ω ⊂ R2(G(bε, δ)) of a cube of the grid G(bε, δ), letting
{Si,ω}i∈Iω be the collection of connected components of {x ∈ ω | |u(x)| ≤ 1/2} whose
degree di,ω 6= 0, we have

|di,ω| ≤ C

∫
Si,ω

|∇Aεuε|2,

where C is a universal constant.

With the aid of the previous lemma we prove the following result.

Lemma 4.2. Under the hypotheses of Corollary 4.1, there exists ε0(γ) such that, for
any ε < ε0 and for any face ω ⊂ R2(G(bε, δ)) of a cube of the grid G(bε, δ), letting
{Si,ω}i∈Iω be the collection of connected components of {x ∈ ω | |uε(x)| ≤ 1/2} whose
degree di,ω 6= 0 and defining rω as in the corollary, we have

|Iω| ≤
∑
i∈Iω

|di,ω| ≤ C

∫
ω

eε(uε, Aε)dH2,

rω ≤ Cε

∫
ω

eε(uε, Aε)dH2,(4.2)

where C is a universal constant.
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Proof. The first assertion immediately follows from Lemma 4.1. To prove (4.2)
observe that, by the Cauchy-Schwarz inequality and the co-area formula, we have∫

ω

eε(uε, Aε)dH2 ≥
∫
ω

|∇|uε||2 +
1

ε2
(1− |uε|2)2dH2

≥
∫
ω

|∇|uε||(1− |uε|2)

ε
dH2

=

∫ ∞
t=0

(1− t2)

ε
H1({x ∈ ω | |uε(x)| = t})dt.

We deduce that there exist t1 ∈ [1/2, 3/4] and t2 ∈ [5/4, 3/2] such that

H1({x ∈ ω | |uε(x)| = ti} ≤ Cε

∫
ω

eε(uε, Aε)dH2

for i = 1, 2. This implies (4.2). �

Remark 4.1. By combining Lemma 4.2 with (2.1c), we obtain∑
ω⊂R2(G(bε,δ))

|Iω| ≤ C

∫
R2(G(bε,δ))

eε(uε, Aε)dH2 ≤ Cδ−1Fε(uε, Aε),(4.3)

∑
ω⊂R2(G(bε,δ))

∑
i∈Iω

|di,ω| ≤ C

∫
R2(G(bε,δ))

eε(uε, Aε)dH2 ≤ Cδ−1Fε(uε, Aε),(4.4)

rG :=
∑

ω⊂R2(G(bε,δ))

rω ≤ Cε

∫
R2(G(bε,δ))

eε(uε, Aε)dH2 ≤ Cεδ−1Fε(uε, Aε),(4.5)

where
∑

ω⊂R2(G(bε,δ))
denotes the sum over all the faces ω of cubes of the grid G(bε, δ).

5. 3D vortex approximation construction

In this section we construct a new polyhedral approximation of the vorticity
µ(uε, Aε) of a configuration (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3) such that Fε(uε, Aε) ≤
ε−γ for some γ ∈ (0, 1). The notion of minimal connection, first introduced in
[BCL86], plays a key role in our construction. We begin this section by reviewing
this concept. We then define the function ζ and the function ζ for d∂Ω, and describe
how to smoothly approximate these functions. Lastly, we provide our 3D vortex
approximation construction.

5.1. Minimal connections. Consider a collection A = {p1, . . . , pk, n1, . . . , nk} of
2k points, where the pi’s are the (not necessarily distinct) positive points and the
ni’s are the (not necessarily distinct) negative points. We define the length of a
minimal connection joining the pi’s to the ni’s by

(5.1) L(A ) := min
σ∈Sk

k∑
i=1

|pi − nσ(i)|,
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where Sk is the set of permutations of k indices and hereafter | · | denotes the
Euclidean distance in R3. We also define the 1-current L(A ), a minimal connection
associated to A , as the sum in the sense of currents of the segments joining pi to
nσ(i), where σ ∈ Sk is a permutation achieving the minimum in (5.1). Although
there can be several minimal connections associated to a collection A , we will make
an arbitrary choice of one.

Let us now consider the distance

d∂Ω(x1, x2) := min{|x1 − x2|, d(x1, ∂Ω) + d(x2, ∂Ω)} x1, x2 ∈ R3.

We define the length of a minimal connection joining the pi’s to the ni’s through ∂Ω
by

(5.2) L∂Ω(A ) = min
σ∈Sk

k∑
i=1

d∂Ω(pi, nσ(i)).

In this case we define the 1-current L∂Ω(A ), a minimal connection through ∂Ω
associated to A , as the sum in the sense of currents of the segments joining pi to
nσ(i) when d∂Ω(pi, nσ(i)) = |pi − nσ(i)| and the (properly oriented) segments joining
pi, nσ(i) to ∂Ω when d∂Ω(pi, nσ(i)) = d(pi, ∂Ω) + d(nσ(i), ∂Ω), where σ ∈ Sk is a
permutation achieving the minimum in (5.2). Once again, if the minimal connection
is not unique we make an arbitrary choice of one.

5.1.1. The function ζ. The following lemma is a particular case of a well-known
result proved in [BCL86].

Lemma 5.1. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and

negative points. Assume, relabeling the points if necessary, that L(A ) =
∑k

i=1 |pi −
ni|. Then there exists a 1-Lipschitz function ζ∗ : ∪i=1,...,k{pi, ni} → R such that

L(A ) =
k∑
i=1

ζ∗(pi)− ζ∗(ni) and ζ∗(ni) = ζ∗(pi)− |pi − ni|.

Definition 5.1 (The function ζ). Let A = {p1, . . . , pk, n1, . . . , nk} be a configura-
tion of positive and negative points. Denote by ζ∗ the 1-Lipschitz function given by
Lemma 5.1. We define the function ζ : R3 → R via the formula

ζ(x) := max
i∈{1,...,k}

(
ζ∗(pi)− max

j∈{1,...,2k}
d(i,j)(x)

)
,

with

d(i,j)(x) := 〈pi − x, ν(i,j)〉, ν(i,j) :=

{
pi−aj
|pi−aj | if pi 6= aj

0 if pi = aj
,

where here and in the rest of the paper the points ai are defined as follows: if j ∈
{1, . . . , k} then aj = pj, if j ∈ {k + 1, . . . , 2k} then aj = nj−k.
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Lemma 5.2. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and
negative points. Denote by ζ∗ : ∪i=1,...,k{pi, ni} → R the function given by Lemma
5.1 and define ζ : R3 → R as in Definition 5.1. Then ζ is a 1-Lipschitz extension
of ζ∗ to R3.

Proof. It is easy to see that ζ is a 1-Lipschitz function. Let us check that

ζ(pi) = ζ∗(pi) and ζ(ni) = ζ∗(ni)

for every i ∈ {1, . . . , k}. Observe that

|d(i,j)(x)| = |〈pi − x, ν(i,j)〉| ≤ |pi − x|.

Moreover

d(i,j)(al) = |pi − al| for any al ∈ A ,

thus

ζ(al) = max
i∈{1,...,k}

(ζ∗(pi)− |pi − al|).

Since ζ∗ is 1-Lipschitz, we deduce that ζ(al) ≤ ζ∗(al). It follows that ζ(pl) = ζ∗(pl)
for every l ∈ {1, . . . , k}. We conclude the proof by noting that, for any l ∈ {1, . . . , k},

ζ(nl) ≥ ζ∗(pl)− |pl − nl| = ζ∗(nl).

�

Let us remark that this extension is not the same that appears in [BCL86]. As
pointed out in the introduction (see Section 1.5), our strategy of proof of the main
results combines the use of the co-area formula and the ball construction method
applied on the level sets of the function ζ. In Section 3, we saw that in order to apply
the ball construction on a surface we need to control its second fundamental form,
but since ζ is only Lipschitz, we have no control on the second fundamental form of
its level sets. For this reason we need to smoothly approximate this function and,
moreover, to provide a quantitative estimate of the second fundamental form of the
approximation. We have the following technical result, whose proof is postponed to
Appendix A.

Proposition 5.1 (Quantitative smooth approximation of the function ζ). Let A =
{p1, . . . , pk, n1, . . . , nk} be a configuration of positive and negative points. Assume,

relabeling the points if necessary, that L(A ) =
∑k

i=1 |pi − ni|. Define DA :=
maxai,aj∈A |ai−aj| to be the maximum Euclidean distance between any of the points
of A . Then there exist universal constants C,C0, C1 > 0 such that, for any ρ ∈
(0, 1/2) and for any 0 < λ ≤ λ0(ρ) = (C0(2k)−5)1/ρ, there exists a smooth function
ζλ : R3 → R satisfying:

(1) |L(A )−
∑k

i=1 ζλ(pi)− ζλ(ni)| ≤ CDA (2k)6λρ.
(2) ‖∇ζλ‖L∞(R3) ≤ 1.
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(3) For any 0 < κ < λ2ρ/3, there exists a set Tκ ⊂ R with

|Tκ| ≤ C(2k)8 λ

λ2ρ − 3κ
,

such that, for any t ∈ R \ Tκ, {x | ζλ(x) = t} is a complete submanifold of R3

whose second fundamental form is bounded by C1(λ2κ)−1.

5.1.2. The function ζ for d∂Ω. When the Euclidean distance is replaced with the
distance through ∂Ω the following lemma can be proved (see [BCL86]).

Lemma 5.3. Let A = {p1, . . . , pk, n1, . . . , nk} ⊂ Ω be a configuration of positive
and negative points. Assume, relabeling the points if necessary, that L∂Ω(A ) =∑k

i=1 d∂Ω(pi, ni). Then there exists a function ζ∗ : ∪i=1,...,k{pi, ni} → R, 1-Lipschitz
for the distance d∂Ω, such that

L∂Ω(A ) =
k∑
i=1

ζ∗(pi)− ζ∗(ni) and ζ∗(ni) = ζ∗(pi)− d∂Ω(pi, ni).

Definition 5.2 (The function ζ for d∂Ω). Let A = {p1, . . . , pk, n1, . . . , nk} be a
configuration of positive and negative points. Denote by ζ∗ the function given by
Lemma 5.1. We define the function ζ : R3 → R for d∂Ω via the formula

ζ(x) := max
i∈{1,...,k}

(ζ∗(pi)− di(x, ∂Ω)) ,

where

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(pi, ∂Ω)− d(x, ∂Ω)

)
, d(pi, ∂Ω) + d(x, ∂Ω)

]
,

with

d(i,j)(x) = 〈pi − x, ν(i,j)〉, ν(i,j) =

{
pi−aj
|pi−aj | if pi 6= aj

0 if pi = aj
.

Lemma 5.4. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and
negative points. Denote by ζ∗ : ∪i=1,...,k{pi, ni} → R the function given by Lemma
5.3 and define ζ : R3 → R as in Definition 5.2. Then ζ is a 1-Lipschitz extension
of ζ∗ to R3, which is constant on ∂Ω.

Proof. It is easy to see that ζ is a 1-Lipschitz function. Let us check that

ζ(pi) = ζ∗(pi) and ζ(ni) = ζ∗(ni)

for every i ∈ {1, . . . , k}. By the proof of Lemma 5.2, we know that

d(i,j)(al) = |pi − al| for any al ∈ A .

By the triangular inequality, we deduce that

max (|pi − al|, d(pi, ∂Ω)− d(al, ∂Ω)) = |pi − al|.
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Then

di(al, ∂Ω) = min (|pi − al|, d(pi, ∂Ω)− d(al, ∂Ω)) = d∂Ω(pi, al),

which implies that

ζ(al) = max
i∈{1,...,k}

(ζ∗(pi)− d∂Ω(pi, al)).

Since ζ∗ is 1-Lipschitz for the distance d∂Ω, we have that ζ(al) ≤ ζ∗(al). It follows
that ζ(pl) = ζ∗(pl) for every l ∈ {1, . . . , k}, but

ζ(nl) ≥ ζ∗(pl)− d∂Ω(pl, nl) = ζ∗(nl).

Finally, observe that, for all x ∈ ∂Ω,

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(pi, ∂Ω)

)
, d(pi, ∂Ω)

]
= d(pi, ∂Ω).

Thus

ζ(x) = max
i∈{1,...,k}

(ζ∗(pi)− d(pi, ∂Ω))

for all x ∈ ∂Ω. �

We remark that this extension is not the same that appears in [BCL86]. In order
to provide a lower bound for the free energy close to the boundary, we need to
smoothly approximate the function ζ for d∂Ω and provide a quantitative estimate of
the second fundamental form of the approximation. In this paper we describe two
methods of doing this, which may be of independent interest. The first method is
based on an analysis of the curvature of the boundary of the domain, which requires
it to be of class C2. The second method is based on a polyhedral approximation of
∂Ω, which in addition requires it to have strictly positive Gauss curvature.

Proposition 5.2. [Quantitative smooth approximation of the function ζ for d∂Ω –
First method] Assume that ∂Ω is of class C2. Let A = {p1, . . . , pk, n1, . . . , nk} ⊂ Ω
be a configuration of positive and negative points. Assume, relabeling the points if
necessary, that L∂Ω(A ) =

∑k
i=1 d∂Ω(pi, ni). Then there exist constants θ0, C, C0, C1

that depend only on ∂Ω such that, for any ρ ∈ (0, 1/4) and for any 0 < λ < λ0(ρ) =
(C0(2k)−5)1/ρ, there exists a smooth function ζλ : R3 → R satisfying:

(1) |L∂Ω(A )−
∑k

i=1 ζλ(pi)− ζλ(ni)| ≤ C(2k)6λρ.
(2) Letting

(5.3) Ωλ := {x ∈ Ω | 2λρ < dist(x, ∂Ω) < θ0 − 2λρ},

we have ‖∇ζλ‖L∞(Ωλ) ≤ 1.
(3) |ζλ({x ∈ Ω | dist(x, ∂Ω) ≤ 2λρ})| ≤ Cλρ.
(4) For any 0 < κ < λ2ρ/3, there exists a set Tκ ⊂ R with

|Tκ| ≤ C

(
(2k)8 λ

(λ2ρ − 3κ)
+ (2k)6 λ

(λ2ρ − 3κ)4
+ (2k)4λ3ρ/4

)
,
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such that, for any t ∈ ζλ(Ωλ) \ Tκ, {x | ζλ(x) = t} is a complete submanifold of
R3 whose second fundamental form is bounded by C1(λ2κ)−1.

The proof of this proposition is deferred to Appendix B.

Proposition 5.3. [Quantitative smooth approximation of the function ζ for d∂Ω –
Second method] Assume that ∂Ω is of class C2 and has strictly positive Gauss curva-
ture. Let A = {p1, . . . , pk, n1, . . . , nk} ⊂ Ω be a configuration of positive and negative

points. Assume, relabeling the points if necessary, that L∂Ω(A ) =
∑k

i=1 d∂Ω(pi, ni).
Then there exist constants τ0, C, C0, C1, that depend only on ∂Ω, such that, for any
τ < τ0, for any ρ ∈ (0, 1/2), and for any

0 < λ < λ0(ρ, τ) =
(
C0 min

{
(2k)−5, (2k)−3τ 2, (2k)−1τ 4, τ 5

})1/ρ
,

there exists a smooth function ζλ : R3 → R satisfying:

(1) |L∂Ω(A )−
∑k

i=1 ζλ(pi)− ζλ(ni)| ≤ C(((2k)6 + (2k)4τ−2 + (2k)2τ−4)λρ + 2kτ 2).
(2) Letting

Ωλ := {x ∈ Ω | 2λ < dist(x, ∂Ω)},
we have ‖∇ζλ‖L∞(Ωλ) ≤ 1.

(3) |ζλ(Ω \ Ωλ)| ≤ C(τ 2 + λ).
(4) For any 0 < κ < λ2ρ/3, there exists a set Tκ ⊂ R with

|Tκ| ≤ C((2k)8 + τ−8)
λ

(λ2ρ − 3κ)
,

such that, for any t ∈ ζλ(Ωλ) \ Tκ, {x | ζλ(x) = t} is a complete submanifold of
R3 whose second fundamental form is bounded by C1(λ2κ)−1.

We point out that in this proposition the parameter τ is associated to the poly-
hedral approximation of ∂Ω. The proof of this result is deferred to Appendix C.

5.2. Construction of the vorticity approximation. Let γ ∈ (0, 1) and consider
a configuration (uε, Aε) ∈ H1(Ω,C) ×H1(Ω,R3) such that Fε(uε, Aε) ≤ ε−γ. Then
Lemma 2.1 provides a grid G(bε, δ) satisfying (2.1). We begin by constructing our
approximation in the cubes of the grid. For each cube Cl ∈ G(bε, δ), Corollary 4.1
gives the existence of points ai,ω and integers di,ω 6= 0 such that

µε,ω ≈ 2π
∑
i∈Iω

di,ωδai,ω ,

for each of the six faces ω ⊂ ∂Cl of the cube Cl. Observe that, since ∂µ(uε, Aε) = 0
relative to Cl, we have ∑

ω⊂∂Cl

∑
i∈Iω

di,ω = 0.

Then, we define a configuration Al := {p1, . . . , pkl , n1, . . . , nkl} of positive and nega-
tive points associated to ∂Cl, by repeating the points ai,ω according to their degree
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di,ω, for each of the six faces ω of the cube Cl. The previous observation implies
that the number of positive points pi’s and negative points ni’s of the collection Al

are equal. We note that

2kl =
∑
ω⊂∂Cl

∑
i∈Iω

|di,ω|.

Consider the minimal connection L(Al) associated to Al. It may happen that the
segment connecting some pi to nσ(i) in L(Al) belongs to one of the faces ω of the

cube Cl. In this case we define a new connection L̃(Al) by replacing the original
segment connecting pi to nσ(i) with a Lipschitz curve connecting pi to nσ(i) from
the inside (preserving the orientation), so that its intersection with ∂Cl is given by

{pi, nσ(i)}. This process can be performed in such a way that |L(Al)−|L̃(Al)|| is less

than an arbitrarily small number. We remark that the resulting connection L̃(Al) is
a polyhedral 1-current whose intersection with ∂Cl is equal to ∪i=1,...,kl{pi, ni}. We
define

νε,Cl := 2πL̃(Al) in Cl

for every cube Cl ∈ G(bε, δ).

We now construct our vorticity approximation in Θ (recall (2.2)). Once again
Corollary 4.1 gives the existence of points ai,ω and integers di,ω 6= 0 such that

µε,ω ≈ 2π
∑
i∈Iω

di,ωδai,ω

for each face ω ⊂ R2(G(bε, δ)) of a cube of the grid such that ω ⊂ ∂G. Then, we
define a configuration A∂G := {p1, . . . , pk∂G , n1, . . . , nk∂G} of positive and negative
points associated to ∂G by repeating the points ai,ω according to their degree di,ω,
for each face ω ∈ R2(G(bε, δ)) of a cube of the grid such that ω ⊂ ∂G. Observe
that, since ∂µ(uε, Aε) = 0 relative to ∂G, we have∑

ω⊂∂G

∑
i∈Iω

di,ω = 0,

which ensures that the number of positive points p′is and negative points n′is of the
collection A∂Ω are equal. We note that

2k∂G =
∑
ω⊂∂G

∑
i∈Iω

|di,ω|.

One might want to define the vorticity approximation close to the boundary as
the minimal connection L∂Ω(A∂G) through ∂Ω associated to A∂G. Unfortunately we
cannot do this, because it is not possible to rule out the possibility of having

L∂Ω(A∂G) ∩ (Ω \Θ) 6= ∅.

For this reason, we consider the distance

d∂Ω(x1, x2) := min{d(x1, x2), d(x1, ∂Ω) + d(x2, ∂Ω)} x1, x2 ∈ ∂G,
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where d denotes the geodesic distance on ∂G.
Let us define

(5.4) Ld∂Ω
(A∂G) = min

σ∈Sk∂G

k∂G∑
i=1

d∂Ω(pi, nσ(i))

and the 1-current Ld∂Ω
(AG), a minimal connection through ∂Ω associated to A∂G

contained in Θ, as the sum in the sense of currents of the geodesics (on ∂G) joining
pi to nσ(i) when d∂Ω(pi, nσ(i)) = d(pi, nσ(i)) and the (properly oriented) segments
joining pi, nσ(i) to ∂Ω when d∂Ω(pi, nσ(i)) = d(pi, ∂Ω) + d(nσ(i), ∂Ω), where σ ∈ SkG

is a permutation achieving the minimum in (5.4). If the minimal connection is not
unique we make an arbitrary choice of one.

Performing a replacement argument (from the inside) in Θ, analogous to the one

described above, we define a new connection L̃d∂Ω
(A∂G), with |Ld∂Ω

(AG)−|L̃d∂Ω
(AG)|

less than an arbitrarily small number, whose intersection with ∂G is equal to
∪i=1,...,k∂G{pi, ni} and which is contained in Θ. We set

νε,Θ := 2πL̃d∂Ω
(A∂G) in Θ.

Finally, we define our polyhedral approximation νε of the vorticity µ(uε, Aε) by

(5.5) νε :=
∑

Cl∈G(bε,δ)

νε,Cl + νε,Θ,

where the sums are understood in the sense of currents.
We observe that the topological degree depends on the orientation of the domain

in which it is computed. If a face ω ⊂ R2(G(bε, δ)) belongs to two cubes C1 and C2

of the grid, then its associated collection of degrees di,ω’s for C1 is equal to minus
its associated collection of degrees for C2. Of course the same occurs for those faces
ω belonging to one of the cubes of the grid and to ∂G.

On the other hand (2.1a) implies that, for any face ω ⊂ R2(G(bε, δ)), the inter-
secction between the collection of points ai,ω’s and R1(G(bε, δ)) is empty.

By combining these arguments we conclude that the 1-currents νCl ’s and νΘ have
a good compatibility condition between each other. Hence, by construction, νε is a
polyhedral 1-current such that ∂νε = 0 relative to Ω. In addition it approximates
well µ(uε, Aε) in an appropiate norm, as we shall show in Section 8.

5.2.1. An important remark towards the proof of the lower bound close to the bound-
ary. Let us study the 1-current Ld∂Ω

(AG) defined above. We are interested in the
situation d∂Ω(pi, nσ(i)) = d(pi, nσ(i)), where σ denotes a (fixed) permutation achiev-
ing the minimum in (5.4). Since d(x, ∂Ω) ≤ 2δ for any x ∈ ∂G, we have two
possibilities:

• d(pi, nσ(i)) = |pi − nσ(i)| and there exists a face ω ⊂ ∂G which contains both
points.
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• d(pi, nσ(i)) 6= |pi − nσ(i)| and there exist (different) faces w1, . . . , wJ(i) ⊂ ∂G,
with 2 ≥ J(i) < C∗ for some constant C∗ > 0 that depends only on the
boundary, such that pi ∈ ω1, nσ(i) ∈ ωJ(i), and

d(pi, nσ(i)) = |pi − q1|+ |q1 − q2|+ · · ·+ |qJ(i)−2 − qJ(i)−1|+ |qJ(i)−1 − nσ(i)|,
where the points qj are such that qj ∈ ∂ωj ∩ ∂ωj+1, j = 1, . . . , J(i)− 1.

If the second situation occurs for some i, we will enlarge the collection of points
A∂G. We proceed as follows: for any i for which the second situation happens, we
add, for j = 1, . . . , J(i) − 1, the point qj to the collection twice; both as a positive
and negative point (i.e. with degree +1 and −1). This yields a new collection

(5.6) Ã∂G = {p1, . . . , pk̃∂G , n1, . . . , nk̃∂G}
of positive and negative points, which contains A∂G. In particular, we have that

(5.7) k̃∂G ≤ C∗k∂G ≤ C∗
∑
ω⊂∂G

∑
i∈Iω

|di,ω|.

Moreover,

(5.8) Ld∂Ω
(Ã∂G) := min

σ∈Sk̃∂G

k̃∂G∑
i=1

d∂Ω(pi, nσ(i)) = Ld∂Ω
(A∂G).

The commodity of using this new collection is that there exists a permutation σ∗ ∈
Sk̃∂G

achieving the minimum in (5.8), which is naturally derived from the previous
construction, such that if d∂Ω(pi, nσ∗(i)) = d(pi, nσ∗(i)) then d(pi, nσ∗(i)) = |pi−nσ∗(i)|
and there exists a face ω ⊂ ∂G which contains both points. This in particular
implies that

d∂Ω(pi, nσ∗(i)) = min{d(pi, nσ∗(i)), d(pi, ∂Ω) + d(nσ∗(i), ∂Ω)} = d∂Ω(pi, nσ∗(i)).

Finally, by [San01, Lemma 2,2], which is a slight modification of the previously cited
well-known result in [BCL86], there exists a 1-Lipschitz function ζ∗ : ∪i=1,...,k̃∂G

{pi, nσ∗(i)} →
R such that

(5.9) Ld∂Ω
(Ã∂G) =

k̃∂G∑
i=1

ζ∗(pi)−ζ∗(nσ∗(i)) and ζ∗(pi)−ζ∗(nσ∗(i)) = d∂Ω(pi, nσ∗(i)).

Combining this with our previous observation, we get

(5.10) ζ∗(pi)− ζ∗(nσ∗(i)) = d∂Ω(pi, nσ∗(i)).

In particular, we can extend this function by defining the function ζ for d∂Ω as in
Definition 5.2, and therefore in the proof of the lower bound close to the boundary
(see Section 7) will be enough to consider a quantitative smooth approximation
of this extension. It is worth remarking that in this case we cannot ensure that
Ld∂Ω

(Ã∂G) = L∂Ω(Ã∂G), but since (5.10) holds, arguing almost as readily as in the
proofs of Propositions 5.2 and 5.3, one can show that there exists a smooth function
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ζλ associated to Ã∂G satisfying these propositions with the quantity L∂Ω(Ã∂G) being

replaced by
∑k̃∂G

i=1 ζ
∗(pi)− ζ∗(nσ∗(i)). In particular, by combining this with (5.9) and

(5.10), we conclude that∣∣∣∣∣∣Ld∂Ω
(Ã∂G)−

k̃∂G∑
i=1

ζλ(pi)− ζλ(nσ∗(i))

∣∣∣∣∣∣ ≤ small (quantitative) error.

The function ζλ that we use in Section 7 is precisely the function described here.

5.2.2. The support of νε. To end this section we present a result about the support
of νε.

Lemma 5.5. Let γ ∈ (0, 1) and assume that (uε, Aε) ∈ H1(Ω,C) ×H1(Ω,R3) is a
configuration such that Fε(uε, Aε) ≤ ε−γ, so that, by Lemma 2.1, there exists a grid
G(bε, δ) satisfying (2.1). For each face ω ⊂ R2(G(bε, δ)) of a cube of the grid, let
|Iω| be the number of connected components of {x ∈ ω | |uε(x)| ≤ 1/2} whose degree
is different from zero. Then, letting

(5.11) G0 := {Cl ∈ G |
∑

ω⊂∂Cl
|Iω| > 0}

and defining νε by (5.5), we have

supp(νε) ⊂ Sνε :=
⋃

Cl∈G0

Cl ∪
{

Θ if
∑

ω⊂∂G |Iω| > 0
∅ if

∑
ω⊂∂G |Iω| = 0

.

Moreover

|Sνε| ≤ Cδ(1 + δFε(uε, Aε)),

where C is a constant depending only on ∂Ω.

Proof. The first assertion follows readily from the definition of νε. Recall that, by
(4.3), the number of faces ω ∈ R2(G(bε, δ)) of a cube of the grid such that |Iω| > 0
is bounded above by Cδ−1Fε(uε, Aε). We deduce that #({l | Cl ∈ G0}) is bounded
above by Cδ−1Fε(uε, Aε). By noting that |Θ| ≤ Cδ, for some constant C depending
only on ∂Ω, we conclude that

|Sνε| ≤
∑

Cl∈G0

|Cl|+ |Θ| ≤ δ3#({l | Cl ∈ G0}) + Cδ ≤ Cδ(1 + δFε(uε, Aε)).

�

6. Lower bound for Eε(uε) far from the boundary

In this section we provide a lower bound, in the spirit of (1.1), for the energy
without magnetic field Eε(uε) in the union of cubes of the grid G(bε, δ) given by
Lemma 2.1. The proof relies on a slicing procedure based on the level sets of the
smooth approximation of the function ζ constructed in Appendix A and on the ball
construction method on a surface of Section 3.
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Proposition 6.1. Let m,M > 0 and assume that (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3)
is such that Fε(uε, Aε) = Mε ≤ M | log ε|m. For any b, q > 0, there exists ε0 > 0
depending only on b, q,m, and M , such that, for any ε < ε0, letting G(bε, δ) denote
the grid given by Lemma 2.1 with δ = δ(ε) = | log ε|−q, and defining νε by (5.5) and
G0 by (5.11), if

(6.1) Eε(uε,∪Cl∈G0Cl) ≤ KMε and
∑

Cl∈G0

∫
∂Cl

eε(uε)dH2 ≤ Kδ−1Mε

for some universal constant K, then

Eε(uε,∪Cl∈G0Cl) ≥
1

2

∑
Cl∈G0

|νε,Cl |
(

log
1

ε
− logC

M56
ε | log ε|7(1+b)

δ55

)
− C

| log ε|b
,

where C is a universal constant.

Proof. Let us first prove an estimate for each cube of the grid.

Step 1. Lower bound via the co-area formula. We consider a cube Cl ∈ G0.
For each of the six faces ω of Cl, denote by {Si,ω}i∈Iω the collection of connected
components of {x ∈ ω | |uε(x)| ≤ 1/2}. We define

Sl := ∪ω⊂∂Cl ∪i∈Iω Si,ω.

Note that |uε(x)| > 1/2 for any x ∈ ∂Cl \ Sl.
Denote by Al = {p1, . . . pkl , n1, . . . , nkl} the configuration of positive and negative

points associated to the cube Cl (see Section 5.2). For parameters ρ ∈ (0, 1/2),
0 < λ = λ(l) ≤ (C0(2kl)

−5)1/ρ, and 0 < κ = κ(λ) < λ2ρ/3 to be chosen later, let
ζλ be the smooth function associated to Al by Proposition 5.1 and consider the set
Tκ defined there. Here the constant C0 is the universal constant appearing in the
proposition.

Letting

C̃l := {x | d(x,Cl) < C1λ
2κ, projClx 6∈ Sl},

where C1 is the universal constant appearing in the third statement of Proposition

5.1, we define vε : C̃l → C via the formula

vε(x) = uε(projClx) x ∈ C̃l.

Observe that

Eε(uε,Cl) ≥ Eε(vε, C̃l)− C1λ
2κ

∫
∂Cl\Sl

eε(uε)dH2.

In particular, if λ2κ is small enough then Eε(vε, C̃l) ≤ 2Mε. We also define

Uλ := ζλ({x ∈ ∂C̃l | projClx ∈ Sl})
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and note that

|Uλ| ≤
∑
ω⊂∂Cl

∑
i∈Iω

diam(Si,ω) + (2kl)C1λ
2κ.

Since |∇ζλ| ≤ 1, using the co-area formula, we deduce that

Eε(vε, C̃l) ≥
∫

C̃l

eε(vε)|∇ζλ| =
∫
t∈R

∫
{ζλ=t}∩C̃l

eε(vε)dH2dt.

Step 2. Lower bound via the ball construction on a surface. We would now
like to apply the results of Section 3. Let us consider a small number γ > 0 and
define

Vγ :=

{
t ∈ R

∫
{ζλ=t}∩C̃l

eε(vε)dH2 >
1

γ
Mε

}
.

Note that |Vγ| ≤ 2Kγ. Finally, let us define

Tbad := Tκ ∪ Uλ ∪ Vγ, Σt := {ζλ = t} ∩ C̃l, t∗ := min
ai∈Al

ζλ(ai), and t∗ := max
ai∈Al

ζλ(ai).

For t ∈ Tgood := [t∗, t
∗] \ Tbad it holds that:

•
∫

Σt
eε(vε)dH2 ≤ γ−1Mε.

• {ζλ = t} is a surface whose second fundamental form is bounded by C1(λ2κ)−1.
Note that this surface is necessarily oriented since it is a level set of ζλ.
• ∂Σt = {ζλ = t} ∩ ∂C̃l.
• |vε(x)| > 1/2 if d(x, ∂Σt) < C1λ

2κ.

Then Corollary 3.1 applied to vε on Σt with Qε = C1(λ2κ)−1 and Mε = γ−1Mε,
yields that, for any t ∈ Tgood,∫

Σt

eε(vε)dH2 ≥ π|deg(vε, ∂Σt)|
(

log
1

ε
− log

C1Mε

λ2κγ

)
.1

We point out that we cannot directly apply Corollary 3.1 to uε on Σ = {ζλ = t}∩Cl

(for t ∈ Tgood), because (3.5) does not necessarily hold in this case. For this reason,

we extended the function uε to C̃l in the previous step.
Noting that ∂Σt = ∂({ζλ ≥ t} ∩ ∂C̃l), we deduce that

deg(vε, ∂Σt) = d(t) := #{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}.

1To apply the corollary we actually need λ−1, κ−1, and γ−1 to be bounded above by positive

powers of | log ε|. For this reason, and because of our choice of these parameters in terms of δ(ε)

(see Step 3), we require δ to be a negative power of | log ε| in the statement.
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By combining our previous estimates, we find

Eε(vε, C̃l) ≥
∫
t∈Tgood

∫
Σt

eε(vε)dH2dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)∫
t∈Tgood

d(t)dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)(∫ t∗

t∗

d(t)dt−
∫
t∈Tbad

|d(t)|dt
)
.

Moreover, for any t ∈ Tbad,

|d(t)| = |#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}| ≤ kl.

Then ∫
t∈Tbad

|d(t)|dt ≤ kl|Tbad| ≤ kl(|Tκ|+ |Uλ|+ |Vγ|).

On the other hand, observe that∫ t∗

t∗

d(t)dt =

∫ t∗

t∗

(#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}) dt =

kλ∑
i=1

ζλ(pi)− ζλ(ni).

Since ∣∣∣∣∣L(Al)−
kl∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ CDAl(2kl)
6λρ ≤ Cδ(2kl)

6λρ

and remembering that |2πL(Al)−|νε,Cl || can be taken arbitrarily small, we conclude
that ∫ t∗

t∗

d(t)dt ≥ 1

2π
|νε,Cl | − C

(
δ(2kl)

6λρ + (2kl)λ
)
,

where hereafter C > 0 denotes a universal constant that may change from line to
line. Collecting our previous computations, we find

Eε(uε,Cl) ≥
1

2
|νε,Cl |

(
log

1

ε
− log

C1Mε

λ2κγ

)
− El,

where

El := C
(
δ(2kl)

6λρ + kl(|Tκ|+ |Uλ|+ |Vγ|)
)

log
1

ε
+ C1λ

2κ

∫
∂Cl\Sl

eε(uε)dH2.

Step 3. Choice of the parameters. We now want to combine the estimates
found for cubes in G0. Observe that if λ and κ are chosen independent of l then

Eε(uε,∪Cl∈G0Cl) ≥
1

2

∑
Cl∈G0

|νε,Cl |
(

log
1

ε
− log

C1Mε

λ2κγ

)
−
∑

Cl⊂G0

El.
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Our objective is then to choose the parameters λ, κ = κ(λ), and γ independent of l
and such that

∑
Cl⊂G0

El ≤ C| log ε|−b. Since (4.4) implies that∑
Cl∈G0

2kl ≤ Cδ−1Mε,

we can achieve our goal provided that λ satisfies λ ≤ (C0(Cδ−1Mε)
−5)1/ρ.

Letting κ = λ2ρ/6, and using (4.4), (4.5), and (6.1), we are led to∑
Cl∈G0

El ≤ C log
1

ε

(
M6

ε

δ5
λρ +

M9
ε

δ9
λ1−2ρ +

M2
ε

δ2
ε+

Mε

δ
γ

)
.

Then, choosing ρ = 6/21,

λ =

(
1

| log ε|1+b

δ9

M9
ε

) 21
9

, and γ =
1

| log ε|1+b

δ

Mε

,

we easily check that there exists ε0 > 0 depending only on b, q,m, and M , such that∑
Cl∈G0

El ≤ C| log ε|−b for any 0 < ε < ε0. Thus

Eε(uε,∪Cl∈G0Cl) ≥
1

2

∑
Cl∈G0

|νε,Cl |
(

log
1

ε
− logC

M56
ε | log ε|7(1+b)

δ55

)
− C

| log ε|b
.

The proposition is proved. �

7. Lower bound for Eε(uε) close to the boundary

In this section we provide a lower bound, in the spirit of (1.1), for the energy
without magnetic field Eε(uε) in Θ. The proof relies on a slicing procedure based
on the level sets of the smooth approximation of the function ζ for d∂Ω constructed
in Appendix B and on the ball construction method on a surface of Section 3.

Proposition 7.1. Suppose that ∂Ω is of class C2. Let m,M > 0 and assume that
(uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3) is such that Fε(uε, Aε) = Mε ≤M | log ε|m. For any
b, q > 0, there exists ε0 > 0 depending only on b, q,m,M , and ∂Ω, such that, for any
ε < ε0, letting G(bε, δ) denote the grid given by Lemma 2.1 with δ = δ(ε) = | log ε|−q,
and defining νε by (5.5) and Θ, ∂G by (2.2), if

(7.1) Eε(uε,Θ) ≤ KMε and

∫
∂G

eε(uε)dH2 ≤ Kδ−1Mε

for some universal constant K > 0, then

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− logC

M124
ε | log ε|(20+1/3)(1+b)

δ123

)
− C

| log ε|b
,

where C is a constant depending only on ∂Ω.
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Proof. We proceed in a similar way to the proof of Proposition 6.1.

Step 1. Lower bound via the co-area formula. For each face ω ∈ R2(G(bε, δ))
of a cube of the grid such that ω ⊂ ∂G, denote by {Si,ω}i∈Iω the collection of
connected components of {x ∈ ω | |uε(x)| ≤ 1/2}. We define

S∂G := ∪ω⊂∂G ∪i∈Iω Si,ω.

Note that |uε(x)| > 1/2 for any x ∈ ∂G \ S∂G.

Denote by Ã∂G = {p1, . . . pk̃∂G , n1, . . . , nk̃∂G} ⊂ Ω the configuration of positive and
negative points associated to ∂G defined in (5.6). For parameters ρ ∈ (0, 1/4) and

0 < λ ≤ (C0(2k̃∂G)−5)1/ρ to be chosen later, let ζλ be the smooth function associated

to Ã∂G by Proposition 5.2, or, more precisely, the function described in Section 5.2.1
for which (up to a relabeling of the points) the quantity L∂Ω(Ã∂G) is replaced with

Ld∂Ω
(Ã∂G) in the statement of the proposition. Here the constant C0 = C0(∂Ω) is

the constant appearing in the proposition. In addition, for 0 < κ = κ(λ) < λ2ρ/3 to
be chosen later, consider the set Tκ defined there.

Let

∂G̃ = {x ∈ Ω \Θ | min
y∈∂G
‖x− y‖∞ = C1λ

2κ},

where C1 is the constant appearing in the fourth statement of Proposition 5.2.
Observe that ∂G̃ corresponds to a shrunk version of the polyhedron ∂G, or, in other
words, a smaller version of ∂G with the same shape. Each face ω ⊂ ∂G has a
parallel counterpart face ω̃ ⊂ ∂G̃ which corresponds to a translated and in some
cases also a shrunk version of ω. It is easy to see that there exists a bijective function
f : ∂G→ ∂G̃ mapping any x ∈ ω ⊂ ∂G to its unique counterpart point x̃ ∈ ω̃ ⊂ ∂G̃.
One immediately checks that, for any x, y ∈ ω ⊂ ∂G,

|f(x)− x| ≤
√

2C1λ
2κ and

1√
2
|x− y| ≤ |f(x)− f(y)| ≤ |x− y|.

Denoting by O the open region enclosed by ∂G and ∂G̃, we observe that for any
y ∈ O there exists a unique xy ∈ ∂G and a unique ty ∈ [0, 1] such that y =
tx+ (1− t)f(x). Letting

Õ := {y ∈ O | xy 6∈ S∂G},

we define vε : Θ ∪ Õ → C by

vε(y) = uε(y) if y ∈ Θ, vε(y) = uε(xy) if y ∈ Õ.

Note that vε is a H1-extension of uε and that

Eε(vε, Õ) ≤ Eε(vε,O) ≤
√

2C1λ
2κ

∫
∂G̃

eε(vε)dH2 ≤ 2C1λ
2κ

∫
∂G

eε(uε)dH2.
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Thus

Eε(uε,Θ) ≥ Eε(vε,Θ ∪ Õ)− Eε(vε, Õ) ≥ Eε(vε,Θ ∪ Õ)− 2C1λ
2κ

∫
∂G

eε(uε)dH2.

In particular, if λ2κ is small enough then Eε(vε,Θ ∪ Õ) ≤ 2Mε. We also define

Uλ := ζλ({y ∈ ∂(Θ ∪ Õ) \ ∂Ω | xy ∈ S∂G})
and note that by (4.4), (4.5), and (5.7), we have

|Uλ| ≤ |S∂G|+
√

2(2k̃∂Ω)C1λ
2κ ≤ Cεδ−1Mε + Cδ−1Mελ

2κ.

Since |∇ζλ| ≤ 1 in Ωλ, where Ωλ is the set defined by (5.3), using the co-area formula,
we deduce that

Eε(vε,Θ ∪ Õ) ≥
∫

(Θ∪Õ)∩Ωλ

eε(vε)|∇ζλ| =
∫
t∈R

∫
{ζλ=t}∩(Θ∪Õ)∩Ωλ

eε(vε)dH2dt.

We remark that if δ and λ2κ are small enough then

(Θ ∪ Õ) ∩ Ωλ = (Θ ∪ Õ) ∩ Ω̃λ,

where Ω̃λ := {x ∈ Ω | 2λρ < d(x, ∂Ω)}.
Step 2. Lower bound via the ball construction on a surface. We would now
like to apply the results of Section 3. Let us consider a small number γ > 0 and
define

Vγ :=

{
t ∈ R

∫
{ζλ=t}∩(Θ∪Õ)∩Ω̃λ

eε(vε)dH2 >
1

γ
Mε

}
.

Note that |Vγ| ≤ 2Kγ. Finally, let us define

Tbad = Tκ ∪ Uλ ∪ Vγ ∪ ζλ(Ω \ Ω̃λ),

Σt := {ζλ = t} ∩ (Θ ∪ Õ) ∩ Ω̃λ, t∗ := minai∈A∂G ζλ(ai), and t∗ := maxai∈A∂G ζλ(ai).
For t ∈ Tgood := [t∗, t

∗] \ Tbad it holds that:

•
∫

Σt
eε(vε)dH2 ≤ γ−1Mε.

• {ζλ = t} = {x ∈ Ω̃λ | ζλ(x) = t} is a surface whose second fundamental form is
bounded by C1(λ2κ)−1. Note that this surface is necessarily oriented since it is a
level set of ζλ.
• Σt = {ζλ = t} ∩ (Θ ∪ Õ) and ∂Σt = {ζλ = t} ∩ (∂(Θ ∪ Õ) \ ∂Ω).
• |vε(x)| > 1/2 if d(x, ∂Σt) < C1λ

2κ.

Then Corollary 3.1 applied to vε on Σt with Qε = C1(λ2κ)−1 and M = γ−1Mε,
yields that, for any t ∈ Tgood,∫

Σt

eε(vε)dH2 ≥ π|deg(vε, ∂Σt)|
(

log
1

ε
− log

C1Mε

λ2κγ

)
.2

2To apply the corollary we actually need λ−1, κ−1, and γ−1 to be bounded above by positive

powers of | log ε|. For this reason, and because of our choice of these parameters in terms of δ(ε)

(see Step 3), we require δ to be a negative power of | log ε| in the statement.
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We point out that we cannot directly apply Corollary 3.1 to uε on Σ = {ζλ = t}∩Θ
(for t ∈ Tgood), because (3.5) does not necessarily hold in this case. For this reason,

we extended the function uε to Θ ∪ Õ in the previous step.
Noting that ∂Σt = ∂({ζλ ≥ t} ∩ (∂(Θ ∪ Õ) \ ∂Ω)), we deduce that

deg(vε, ∂Σt) = d(t) := #{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}.

By combining our previous estimates, we find

Eε(vε,Θ ∪ Õ) ≥
∫
t∈Tgood

∫
Σt

eε(vε)dH2dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)∫
t∈Tgood

d(t)dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)(∫ t∗

t∗

d(t)dt−
∫
t∈Tbad

|d(t)|dt
)
.

Moreover, for any t ∈ Tbad,

|d(t)| = |#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}| ≤ k̃∂G.

Then∫
t∈Tbad

|d(t)|dt ≤ k̃∂G|Tbad| ≤ k̃∂G(|Tκ|+ |Uλ|+ |Vγ|+ |ζλ({x ∈ Ω | d(x, ∂Ω) ≤ 2λρ})|).

On the other hand, observe that∫ t∗

t∗

d(t)dt =

∫ t∗

t∗

(#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}) dt =

k̃∂G∑
i=1

ζλ(pi)− ζλ(ni).

Since ∣∣∣∣∣∣Ld∂Ω
(Ã∂G)−

k̃∂G∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣∣ ≤ C(2k̃∂G)6λρ,

and remembering that |2πLd∂Ω
(Ã∂G) − |νε,Θ|| can be taken arbitrarily small, we

conclude that ∫ t∗

t∗

d(t)dt ≥ 1

2π
|νε,Θ| − C(2k̃∂G)6λρ.

Collecting our previous computations, we find

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− log

C1Mε

λ2κγ

)
− EΘ,
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where

EΘ :=C
(
(2k̃∂G)6λρ + k̃∂G

(
|Tκ|+ |Uλ|+ |Vγ|+ |ζλ({x ∈ Ω | d(x, ∂Ω) ≤ 2λρ})|

))
log

1

ε

+ 2C1λ
2κ

∫
∂G

eε(uε)dH2.

Step 3. Choice of the parameters. We now choose the parameters ρ, λ, κ(λ)
and γ. Observe that (4.4) and (5.7) imply that

(2k̃∂G) ≤ Cδ−1Mε.

Letting κ = λ2ρ/6 and using (7.1), we are led to

EΘ ≤ C log
1

ε

(
M6

ε

δ6
λρ +

M4
ε

δ4
λ3ρ/4 +

M9
ε

δ9
λ1−2ρ +

M7
ε

δ7
λ1−8ρ +

M2
ε

δ2
ε+

Mε

δ
γ

)
.

Then, choosing ρ = 6/55,

λ =

(
1

| log ε|1+b

δ6

M6
ε

) 55
6

, and γ =
1

| log ε|1+b

δ

Mε

,

we easily check that there exists ε0 > 0 depending only on b, q,m,M , and ∂Ω, such
that EΘ ≤ C| log ε|−b for any 0 < ε < ε0. Thus

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− logC

M124
ε | log ε|(20+1/3)(1+b)

δ123

)
− C

| log ε|b
.

This concludes the proof of the proposition. �

Remark 7.1. We remark that if in addition ∂Ω has strictly positive Gauss curvature
then we can use the smooth approximation of the function ζ for d∂Ω constructed in
Appendix C. By using Proposition 5.3 with τ = δ and arguing similarly as above,
one can prove that

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− logC

M56
ε | log ε|7(1+b)

δ55

)
− CδMε| log ε| − C

| log ε|b
.

8. Proof of the main results

8.1. Proof of Theorem 1.1. First, using the results of the previous two sections
we prove (1.1).

Proof of (1.1). Since the energy Fε(uε, Aε) is gauge invariant, it is enough to prove
the result in the Coulomb gauge, i.e.

divAε = 0 in Ω and Aε · ν = 0 on ∂Ω.

We immediately check that

‖Aε‖H1(Ω,R3) ≤ C‖ curlAε‖L2(Ω,R3),
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where throughout the proof C > 0 denotes a universal constant that may change
from line to line. By Sobolev embedding theorem we have

‖Aε‖Lp(Ω,R3) ≤ C‖Aε‖H1(Ω,R3)

for any 1 ≤ p ≤ 6. Observe that∫
Ω

|∇uε|2 ≤
∫

Ω

|∇Aεuε|2 + |uε|2|Aε|2 ≤
∫

Ω

|∇Aεuε|2 + (|uε|2 − 1)|Aε|2 + |Aε|2.

By the Cauchy-Schwarz inequality, we have∫
Ω

(|uε|2 − 1)|Aε|2 ≤
(∫

Ω

(1− |uε|2)2

) 1
2
(∫

Ω

|Aε|4
) 1

2

≤ CεFε(uε, Aε).

Thus

Eε(uε) ≤ CFε(uε, Aε).

Let us consider the grid G(bε, δ) given by Lemma 2.1. It is not hard to see that, up
to an adjustment of the constant appearing in the lemma, we can require our grid
to additionally satisfy the inequalities
(8.1)∫

R1(G(bε,δ))

eε(uε)dH1 ≤ Cδ−2Fε(uε, Aε),

∫
R2(G(bε,δ))

eε(uε)dH2 ≤ Cδ−1Fε(uε, Aε).

We define the polyhedral 1-current νε by (5.5). We recall the notation introduced
in Lemma 5.5 and observe that∫

Sνε

|∇uε|2 ≤
∫
Sνε

|∇Aεuε|2 +

∫
Sνε

(|uε|2 − 1)|Aε|2 +

∫
Sνε

|Aε|2.

Using Hölder’s inequality, we find∫
Sνε

(|uε|2 − 1)|Aε|2 ≤ ‖|uε|2 − 1‖L2(Sνε )|Sνε|
1
6‖Aε‖2

L6(Sνε ,R3)

and ∫
Sνε

|Aε|2 ≤ |Sνε|
2
3‖Aε‖2

L6(Sνε ,R3).

We are led to∫
Sνε

|∇uε|2 ≤
∫
Sνε

|∇Aεuε|2 + CFε(uε, Aε)
(
ε|Sνε|

1
6 + |Sνε|

2
3

)
,

which implies that
(8.2)
1

2

∫
Sνε

|∇Aεuε|2+
1

2ε2
(1−|uε|2)2 ≥ Eε(uε, Sνε)−CFε(uε, Aε)

(
ε|Sνε|

1
6Fε(uε, Aε)

1
2 + |Sνε|

2
3

)
.
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Thanks to (8.1), we can apply Proposition 6.1 and Proposition 7.1 with b = n and
q > 0 (in particular δ = δ(ε) = | log ε|−q). We then deduce that there exists ε0 > 0,
depending only on q,m, n,M, and ∂Ω, such that, for any 0 < ε < ε0,

Eε(uε, Sνε) ≥
1

2
|νε|(Ω)|

(
log

1

ε
− logC

M124
ε | log ε|(20+1/3)(1+n)

δ123

)
− C

| log ε|n
,

where C is a constant depending only on ∂Ω. By combining this with (8.2) and
Lemma 5.5, we are led to∫

Sνε

|∇Aεuε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2

≥ |νε|(Ω)

(
log

1

ε
− logC

M124
ε | log ε|(20+1/3)(1+n)

δ123

)
− CMεδ

2
3 − C

| log ε|n
.

By letting q = q(m,n) = 3
2
(m+n), we have Mεδ

2
3 ≤ C| log ε|−n. This concludes the

proof of the lower bound. �

Before presenting the proof of (1.2) for γ = 1, let us prove the following lemma.

Lemma 8.1. Let (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3). Then there exists a constant
C > 0 depending only on ∂Ω, such that

(8.3) ‖µ(uε, Aε)‖C0(Ω)∗ ≤ CFε(uε, Aε).

Proof. By definition

µ(uε, Aε) =
i

2
d (uεdAεūε − ūεdAεuε) + dAε

=
i

2
(duε ∧ dAεūε + uεd(dAεūε)− dūε ∧ dAεuε − ūεd(dAεuε)) + dAε.

Simple computations show that

µ(uε, Aε) =
i

2
(duε ∧ dAεūε − iuεdūε ∧ Aε − dūε ∧ dAεuε + iūεduε ∧ Aε) + dAε

=
i

2
(dAεuε ∧ dAεūε − dAεūε ∧ dAεuε) + dAε = idAεuε ∧ dAεūε + dAε.

Integrating on Ω and using the Cauchy-Schwarz inequality, we find∫
Ω

µ(uε, Aε) ≤ 2
(
Fε(uε, Aε) + Fε(uε, Aε)

1
2 |Ω|

1
2

)
.

Then we easily check that there exists a constant C(∂Ω) > 0 such that∣∣∣∣∫
Ω

µ(uε, Aε) ∧ φ
∣∣∣∣ ≤ C‖φ‖C0(Ω)Fε(uε, Aε)

for any continuous 1-form φ, which implies (8.3). �
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Proof of (1.2) for γ = 1. As in the proof of (1.1), we consider the grid G(bε, δ) given
by Lemma 2.1 and the polyhedral 1-current νε defined by (5.5). The parameter δ is
defined as above.

Let φ ∈ C0,1
T (Ω) be a 1-form. Note that

(8.4)

∣∣∣∣∫
Ω

(µ(uε, Aε)− νε) ∧ φ
∣∣∣∣ ≤∑

Cl∈G(bε,δ)

∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φ
∣∣∣∣+

∣∣∣∣∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ φ
∣∣∣∣ .

First, we consider a cube Cl ∈ G(bε, δ) and define φl =
∫

Cl
φ. Observe that

(8.5) ‖φ− φl‖C0(Cl) ≤ δ‖φ‖C0,1(Cl)

and that∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φ
∣∣∣∣ ≤∣∣∣∣∫

Cl

(µ(uε, Aε)− νε,Cl) ∧ (φ− φl)
∣∣∣∣+

∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φl
∣∣∣∣ .

Using (8.5), we deduce that

(8.6)

∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ (φ− φl)
∣∣∣∣ ≤ δ‖µ(uε, Aε)− νε,Cl‖C0(Cl)∗‖φ‖C0,1(Cl).

On the other hand, since φl is a constant, there exist a function fl such that

φl = dfl,

∫
Cl

fl = 0.

In particular

‖fl‖C0,1(Cl) ≤ |φl|.
By an integration by parts, we have∫

Cl

(µ(uε, Aε)− νε,Cl) ∧ φl =
∑
ω⊂∂Cl

∫
ω

(
µε,ω − 2π

∑
i∈Iω

di,ωδai,ω

)
fl.

Here, we have used the notation introduced in Section 4 and the fact that the re-
striction of νε,Cl to each of the six faces ω of the cube Cl is equal to 2π

∑
i∈Iω di,ωδai,ω .

Corollary 4.1 then yields that

(8.7)

∣∣∣∣∫
Cl

(µε(uε, Aε)− νε,Cl) ∧ φl
∣∣∣∣ ≤

C0

∑
ω⊂∂Cl

max(rω, ε)

(
1 +

∫
ω

eε(uε, Aε)dH2 +

∫
∂ω

eε(uε, Aε)dH1

)
‖fl‖C0,1(Cl),
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where throughout the proof C0 denotes a universal constant that may change from
line to line. Using (8.6) and (8.7), we deduce that

‖µ(uε, Aε)− νε,Cl‖C0,1(Cl)∗ ≤ δ‖µ(uε, Aε)− νε,Cl‖C0(Cl)∗

+ C0

∑
ω⊂∂Cl

max(rω, ε)

(
1 +

∫
ω

eε(uε, Aε)dH2 +

∫
∂ω

eε(uε, Aε)dH1

)
for any cube Cl ∈ G(bε, δ). Then by summing over the cubes of the grid, we obtain

‖µ(uε, Aε)− νε‖C0,1(Ω\Θ)∗ ≤ δ‖µ(uε, Aε)− νε‖C0(Ω\Θ)∗

+ C0 max(rG, ε)

(
1 + 2

∫
R2(G(bε,δ))

eε(uε, Aε)dH2 +8

∫
R1(G(bε,δ))

eε(uε, Aε)dH1

)
.

Using (2.1b), (2.1c), and (4.5), we find

‖µ(uε, Aε)− νε‖C0,1(Ω\Θ)∗ ≤ δ‖µ(uε, Aε)− νε‖C0(Ω\Θ)∗(8.8)

+ C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
.

We now provide an estimate for the last term in (8.4). Observe that if ε is
sufficiently small, and since ∂Ω is of class C2, for any y ∈ Θ, there exists a unique
xy = proj∂Ωy such that y = xy − tyν(xy), for some ty ≥ 0, where ν(xy) is the outer
unit normal to ∂Ω at xy. We define f : Θ→ R by

f(y) = f(xy − tyν(x)) = −tyφ(xy) · ν(xy).

By noting that, for any y ∈ Θ,

∇f(y) = (φ(xy) · ν(xy)) ν(xy) = φ(xy),

one can easily check that

‖f‖C0,1(Θ) ≤ ‖φ‖C0,1(Θ) and ‖φ−∇f‖C0(Θ) ≤ δ‖φ‖C0,1(Θ).

We now write∫
Θ

(µ(uε, Aε)− νε,Θ)∧φ =

∫
Θ

(µ(uε, Aε)− νε,Θ)∧ (φ−df) +

∫
Θ

(µ(uε, Aε)− νε,Θ)∧df.

Observe that∣∣∣∣∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ (φ− df)

∣∣∣∣ ≤ ‖µ(uε, Aε)− νε,Θ‖C0(Θ)∗‖φ− df‖C0(Θ).

On the other hand, by an integration by parts, we find∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ df =
∑
ω⊂∂G

∫
ω

(µε,ω − 2π
∑
i∈Iω

di,ωδai,ω)f.
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Here, we have used the fact that the restriction of νε,Θ to each of the faces ω of a
cube of the grid such that ω ⊂ ∂G is equal to 2π

∑
i∈Iω di,ωδai,ω . We then deduce

that∣∣∣∣∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ φ
∣∣∣∣ ≤ δ‖µ(uε, Aε)− νε‖C0(Θ)∗

+ C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
‖φ‖C0,1(Θ).

By combining this with (8.4) and (8.8), we find

‖µ(uε, Aε)− νε‖C0,1
T (Ω)∗ ≤ δ‖µ(uε, Aε)− νε‖C0(Ω)∗

+ C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
.

Observe now that

‖µ(uε, Aε)− νε‖C0(Ω)∗ ≤ ‖µ(uε, Aε)‖C0(Ω)∗ + ‖νε‖C0(Ω)∗ .

From (1.1), we deduce that

‖νε‖C0(Ω)∗ ≤ C0
Fε(uε, Aε)

| log ε|

By combining the previous two estimates with (8.3), we get

(8.9) ‖µ(uε, Aε)− νε‖C0(Ω)∗ ≤ CFε(uε, Aε),

where C is a constant depending only on ∂Ω. This implies that
(8.10)
‖µ(uε, Aε)−νε‖C0,1

T (Ω)∗ ≤ CδFε(uε, Aε)+C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
.

From this, (1.2) for γ = 1 follows. �

The proof of (1.2) for γ ∈ (0, 1) uses the following simple interpolation fact, as in
[JS02].

Lemma 8.2. Assume µ is a Radon measure on Ω. Then for any γ ∈ (0, 1),

‖µ‖C0,γ
0 (Ω)∗ ≤ ‖µ‖

1−γ
C0

0 (Ω)∗
‖µ‖γ

C0,1
0 (Ω)∗

.

Proof of (1.2) for γ ∈ (0, 1). Note that ‖µ‖C0,γ
0 (Ω)∗ ≤ ‖µ‖C0,γ

T (Ω)∗ for any 1-current

µ. By combining the previous lemma with (8.9) and (8.10), we are led to

‖µ(uε, Aε)− νε‖C0,γ
0 (Ω)∗ ≤ CFε(uε, Aε)

1−γδγ(Fε(uε, Aε) + 1)γ ≤ Cδγ(Fε(uε, Aε) + 1)

for any γ ∈ (0, 1), where C > 0 is a constant depending only on γ and ∂Ω. Then the
proof reduces to proving that this estimate is still valid when we replace the norm
‖ · ‖C0,γ

0 (Ω)∗ with ‖ · ‖C0,γ
T (Ω)∗ . Arguing as in the proof of [JMS04, Proposition 3.1],

we conclude that (1.2) holds for γ ∈ (0, 1). �
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8.2. Proof of Theorem 1.2.

Proof. As in the proof of Theorem 1.1, we consider the grid G(bε, δ) given by Lemma
2.1 and the polyhedral 1-current νε defined by (5.5).

Let us first prove the lower bound. The main difference with the proof of (1.1) is
that in this case we cannot use Proposition 7.1 and therefore we cannot provide a
lower bound for the free energy close to the boundary. Moreover, by arguing in the
same fashion as before, we immediately check that

(8.11)∫
Sνε

|∇Aεuε|2+
1

2ε2
(1−|uε|2)2+| curlAε|2 ≥ |νε|(Ω\Θ)

(
log

1

ε
− logC

M56
ε | log ε|7(1+n)

δ55

)
− CMεδ

2
3 − C| log ε|−n,

where δ = δ(ε) = | log ε|−q with q > 0. Choosing once again q = 3
2
(m + n), and

noting that by the definition of Θ (recall (2.2)) we have Ωε ⊂ Ω\Θ, we get the lower
bound.

We now prove the vorticity estimate for γ = 1. In this case, we work in the space
C0,1

0 (Ω)∗ instead of C0,1
T (Ω)∗. Let φ ∈ C0,1

0 (Ω) be a 1-form. We begin by observing
that (8.8) also holds in this case.

Since φ = 0 on ∂Ω, we have that

‖φ‖C0(Θ) ≤ C0δ‖φ‖C0,1(Θ),

and therefore

(8.12)

∣∣∣∣∫
Θ

(µ(uε, Aε)− νε) ∧ φ
∣∣∣∣ ≤ C0δ‖µ(uε, Aε)− νε‖C0(Θ)∗‖φ‖C0,1(Θ).

On the other hand, from (8.11), we have

‖νε‖C0(Ω\Θ)∗ ≤ C0
Fε(uε, Aε)

| log ε|
.

From (4.4), we deduce that

‖νε‖C0(Θ)∗ ≤ C0δ
Fε(uε, Aε)

δ
= C0Fε(uε, Aε).

Therefore

‖νε‖C0(Ω)∗ ≤ C0Fε(uε, Aε).

By combining this with (8.3), we get

‖µ(uε, Aε)− νε‖C0(Ω)∗ ≤ CFε(uε, Aε).

From this, (8.8), and (8.12) we obtain the vorticity estimate for γ = 1. The estimate
for γ ∈ (0, 1) directly follows from Lemma 8.2. �
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9. Proof of the quantitative product estimate

In this section, we use ideas from [Ser17, Appendix A]. As in Section 1.4, we view
things in three dimensions, where the first dimension is time and the last two are
spatial dimensions.

We consider X ∈ C0,1
0 ([0, T ] × ω,R2), a compactly supported spatial vector field

depending on time, and a function f ∈ C0,1
0 ([0, T ] × ω). Let K denote the union

of the supports of X and f . In order to reduce ourselves to the situation where X
and f are locally constants, we use a partition of unity at a small scale: let Mε be

as in (1.3) and let us consider a covering of K by m(ε) balls of radius M
−1/4
ε (with

bounded overlap), and let {Dk}m(ε)
k=1 be an indexation of this sequence of balls and

{χk}m(ε)
k=1 a partition of unity associated to this covering such that

∑m(ε)
k=1 χk = 1 and

‖∇χk‖L∞ ≤M
1/4
ε for any k = 1, . . . ,m(ε). For each k ∈ {1, . . . ,m(ε)}, let then Xk

and fk be the averages of X and f in Dk. Then, working only in Dk, without loss of
generality, we can assume that Xk is aligned with the first space coordinate vector
e1, with (et, e1, e2) forming an orthonormal frame and the coordinates in that frame
being denoted by (t, w, σ). We will assume first that Xk, fk 6= 0. Let us define for
each k, σ the set

Θk,σ = {(t, w) | (t, w, σ) ∈ Dk},
which is a slice of Dk (hence a two dimensional ball). Let us write µε,k,σ for µε(et, e1)
restricted to Θk,σ. In other words, if ξ is a smooth test-function on Ωσ,k, we have

(9.1)

∫
Θk,σ

µε,k,σ ∧ ξ = −
∫

Θk,σ

(〈duε − iuεAε, iuε〉+ Aε) ∧ dξ,

where d denotes the differential in the slice Θk,σ.
For a given Λ > 0, we let gk be the constant metric on Θk,σ defined by gk(et, et) =√
Λ/|fk|, gk(e1, e1) = 1/(

√
Λ|Xk|), and gk(et, e1) = 0.

We then apply the ball construction method in each set Θk,σ. Instead of construct-
ing balls for the flat metric, we construct geodesic balls for the constant metric gk,
i.e. here, ellipses.

Lemma 9.1. Let Θk,σ ⊂ R2 be as above and denote

Θε
k,σ = {x ∈ Θk,σ | distgk(x, ∂Θk,σ) > ε}.

Assume that

Fε,k,σ :=
1

2

∫
Θk,σ

|∂tuε − iuεΦε|2 + |∂wuε − iuεBε,w|2

+
1

2ε2
(1− |uε|2)2 + |∂tBε,w − ∂wΦε|2 ≤Mε

with Mε as in (1.3). Then if ε is small enough, there exist a universal constant
C > 0 and a finite collection of disjoint closed balls B = {Bi}i∈I for the metric gk of
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centers ai and radii ri such that, letting Ck,Λ := max
{
|fk|

Λ|Xk|
, Λ|Xk|
|fk|

, |fk||Xk|, 1
|fk||Xk|

}
and Rk,Λ := max

{√
Λ
|fk|

1√
Λ|Xk|

}
, we have

(1) r(B) =
∑

i ri ≤ Rk,Λ|fk|2|Xk|2M−1
ε ,

(2) letting V = Θε
k,σ ∩ ∪i∈IBi,

{||uε(x)| − 1| ≥ 1/2} ∩Θε
k,σ ⊂ V,

(3) writing di = deg(uε/|uε|, ∂Bi) if Bi ⊂ Θε
k,σ and di = 0 otherwise, we have for

each i,

(9.2)
1

2

∫
Bi∩Θεk,σ

|fk|2

Λ
|∂tuε − iuεΦε|2 + Λ|Xk|2|∂wuε − iuεBε,w|2

+ |fk|5|Xk|5M−2
ε |∂tBε,w − ∂wΦε|2

≥ π|di|(| log ε| − C logMε + log(C−1
k,Λ|fk|

2|Xk|2))|fk||Xk|,

(4) and letting µε,k,σ = 2π
∑

i diδai, we have for any ξ ∈ C0,1
0 (Θk,σ),∣∣∣∣∣

∫
Θk,σ

(Jε,k,σ − µε,k,σ) ∧ ξ

∣∣∣∣∣ ≤ C‖ξ‖C0,1Ck,Λ|fk|2||Xk|2M−1
ε Fε,k,σ.

Proof. Let us consider the sets

Θ̃k,σ =

{
(s, z)

(
|fk|√

Λ
s,
√

Λ|Xk|z
)
∈ Θk,σ

}
, Θ̃ε

k,σ = {x ∈ Θ̃k,σ | d(x, ∂Θ̃k,σ) > ε},

and define, for (s, z) ∈ Θ̃k,σ, the function

ũε(s, z) = uε

(
|fk|√

Λ
s,
√

Λ|Xk|z, σ
)

and the vector field

Ãε(s, z) = [Ãε,s, Ãε,z](s, z) =

[√
Λ|Xk|Φε,

|fk|√
Λ
Bε,w

](
|fk|√

Λ
s,
√

Λ|Xk|z, σ
)
.

The first three items are a consequence of [SS07, Proposition 4.3]. We start by

noting that by making the change of variables t =
√

Λ
|fk|
s and w = 1√

Λ|Xk|
z, we obtain

1

2

∫
Θ̃k,σ

|∇Ãε
ũε|2 +

1

2ε2
(1− |ũε|2)2 + |∂sÃε,z − ∂zÃε,s|2 ≤ Ck,ΛFε,k,σ.

The co-area formula provides the existence of mε with M−1
ε ≤ mε ≤ 2M−1

ε such that
setting W := {(s, z) | |ũε(s, z)| ≤ 1−mε} has perimeter (for the Euclidean metric)
bounded by CCk,ΛεM

2
ε . We may then apply this proposition to the configuration

(ũε, Ãε), with initial radius r0 = CCk,ΛεM
2
ε and final radius r1 = |fk|2|Xk|2M−1

ε

(provided ε � 1 such that r1 ≤ 1). This yields a collection of disjoint closed balls
B̃ = {B̃i}i∈I such that
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• r(B̃) = |fk|2|Xk|2M−1
ε ,

• Ṽ = Θ̃ε
k,σ ∩ ∪iB̃i covers {(s, z) | ||ũε(s, z)| − 1| ≥ 1

2
} ∩ Θ̃ε

k,σ,

• and writing di = deg(vε/|vε|, ∂B̃i) if B̃i ⊂ Θ̃ε
k,σ and di = 0 otherwise, we have for

each i,

1

2

∫
(B̃i∩Θεk,σ)\W

|∇Ãε
(ũε/|ũε|)|2 + r1(r1 − r0)|∂sAε,z − ∂zAε,s|2 ≥ π|di|

(
log

r1

r0

− C
)
.

Moreover, by [SS07, Lemma 3.4], we have∫
(B̃i∩Θεk,σ)\W

|∇Ãε
ũε|2 ≥

∫
(B̃i∩Θεk,σ)\W

|ũε|2|∇Ãε
(ũε/|ũε|)|2 + |∇|ũε||2

≥ (1−mε)
2

∫
(B̃i∩Θεk,σ)\W

|∇Ãε
(ũε/|ũε|)|2.

Thus
1

2

∫
(B̃i∩Θεk,σ)\W

|∇Ãε
ũε|2 + r1(r1 − r0)|∂sÃε,z − ∂zÃε,s|2

≥ (1−mε)
2π|di|

(
log

r1

r0

− C
)

≥ π|di|
(
| log ε| − C logMε + log(C−1

k,Λ|fk|
2|Xk|2)

)
.

In particular, we deduce that

(9.3) D =
∑
i∈I

|di| ≤
Ck,ΛFε,k,σ
| log ε|

.

Then, by changing variables once again, we obtain balls Bi, the images of the B̃i’s
by the change of variable, which are geodesic balls for the metric gk and whose sum

of radii is bounded by max
{√

Λ
|fk|
, 1√

Λ|Xk|

}
r(B̃) ≤ Rk,Λ|fk|2|Xk|2M−1

ε . Items (2) and

(3) immediately follow from the change of variables and the properties satisfied by
ũε and Ãε.

Item (4) follows from [SS07, Theorem 6.1]. Indeed, denoting ãi the center of B̃i

and letting µ̃ε,k,σ = 2π
∑

i diδãi , this theorem yields, for any ξ̃ ∈ C0,1
0 (Θ̃k,σ), that∣∣∣∣∣

∫
Θ̃k,σ

(µ(ũε, Ãε)− µ̃ε,k,σ) ∧ ξ̃

∣∣∣∣∣ ≤ C‖ξ‖C0,1r(B̃)Ck,ΛFε,k,σ,

where C is a universal constant, but, by change of variables, we have∫
Θ̃k,σ

(
µ(ũε, Ãε)− µ̃ε,k,σ

)
∧ ξ̃ =

∫
Θk,σ

(
Jε,k,σ − 2π

∑
i∈I

diδai

)
∧ ξ,

where ai is the center of the ball Bi, i.e. the image by the change of variables of ãi,

and ξ(t, w) = ξ̃
(
|fk|√

Λ
t,
√

Λ|Xk|w
)

. This concludes the proof. �
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Throughout the rest of this section C > 0 denotes a universal constant that may
change from line to line.

Proof of Theorem 1.3. We proceed similarly to [SS04,Ser17]. We set ϑε,k,σ to be the
µε,k,σ of Lemma 9.1 (item 4) if the assumption Fε,k,σ ≤ Mε is verified, and 0 if not.
We note that

(9.4) ‖Jε,k,σ − ϑε,k,σ‖C0,1
0 (Θk,σ)∗ ≤ C(Ck,Λ|fk|2|Xk|2 + 1)M−1/2

ε Fε,k,σ

is true in all cases. Indeed, either Fε,k,σ ≤ Mε in which case the result is true

by item 4 of Lemma 9.1 since M
−1/2
ε ≥ M−1

ε , or ϑε,k,σ = 0 in which case, for

any ξ ∈ C0,1
0 (Θk,σ), starting from (9.1) and writing |〈∇uε − iAεuε, iuε〉| ≤ |∇uε −

iAεuε|+ |1− |uε|2||∇uε − iAεuε| (note that |1− |uε|| ≤ |1− |uε|2|), we obtain with
the Cauchy-Schwarz inequality, using the boundedness of Θk,σ,∣∣∣∣∣
∫

Θk,σ

Jε,k,σ ∧ ξ

∣∣∣∣∣ ≤ ‖∇ξ‖L∞
∫

Θk,σ

(|∂tuε − iuεΦε|+ |∂wuε − iuεBε,w|)(1 + |1− |uε|2|)

+ ‖ξ‖L∞
∫

Θk,σ

|∂tBε,w − ∂wΦε|

≤ C‖ξ‖C0,1(
√
Fε,k,σ + εFε,k,σ).

Moreover, since Fε,k,σ ≥ Mε, we have
√
Fε,k,σ + εFε,k,σ ≤ 2M

−1/2
ε Fε,k,σ and thus we

find that (9.4) holds as well.
We may now write that∫

Θk,σ

χk

( |fk|2
Λ
|∂tuε − iuεΦε|2 + Λ|Xk|2|∂wuε − iuεBε,w|2

+ |fk|5|Xk|5M−2
ε |∂tBε,w − ∂wΦε|2

)
≥ (| log ε| − C logMε + log(C−1

k,Λ|fk|
2|Xk|2))

∣∣∣∣∣
∫

Θk,σ

|fk||Xk|χkϑε,k,σ

∣∣∣∣∣
− CCk,ΛR2

k,Λ|fk|3|Xk|3M−3/4
ε Fε,k,σ.

Indeed, if we are in a slice where ϑε,k,σ = 0, this is trivially true. If not, we apply
(9.2) and obtain∫

(∪iBi)∩Θεk,σ

χk

( |fk|2
Λ
|∂tuε − iuεΦε|2 + Λ|Xk|2|∂wuε − iuεBε,w|2

+ |fk|5|Xk|5M−2
ε |∂tBε,w − ∂wΦε|2

)
≥ 2π

∑
i∈I

|di|min
Bi

χk(| log ε| − C logMε + log(C−1
k,Λ|fk|

2|Xk|2))|fk||Xk|.
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Besides, we have minBi χk ≥ χk(ai)−C max
{√

Λ
|fk|
, 1√

Λ|Xk|

}
ri‖χk‖C0,1 . Plugging this

in, using item 1 of Lemma 9.1 and (9.3), yields the desired inequality.
Combining with (9.4), we find∫

Θk,σ

χk

( |fk|2
Λ
|∂tuε − iuεΦε|2 + Λ|Xk|2|∂wuε − iuεBε,w|2

+ |fk|5|Xk|5M−2
ε |∂tBε,w − ∂wΦε|2

)
≥ (| log ε| − C logMε + log(C−1

k,Λ|fk|
2|Xk|2))

∣∣∣∣∣
∫

Θk,σ

|fk||Xk|χkJε,k,σ

∣∣∣∣∣
− CC̃k,ΛR̃2

k,ΛM
−3/4
ε Fε,k,σ − C(C̃k,Λ + 1)|fk||Xk|| log ε|M−1/2

ε Fε,k,σ,

where C̃k,Λ := Ck,Λ|fk||Xk| and R̃k,Λ := Rk,Λ|fk||Xk|.
Let us observe that

log(C−1
k,Λ|fk|

2|Xk|2) ≥ log min(Λ,Λ−1) + log min(C−1
k,1|fk|

2|Xk|2, 1).

Moreover (see (9.5))

log min(C−1
k,1|fk|

2|Xk|2, 1)

∣∣∣∣∣
∫

Θk,σ

|fk||Xk|χkJε,k,σ

∣∣∣∣∣
≥ −

∣∣log min{C−1
k,1|fk|

2|Xk|2, 1}
∣∣ |fk||Xk|

∫
Θk,σ

χk|Vε|

≥ −C max
s∈(0,1)

s| log s|
∫

Θk,σ

χk|Vε|

= −C
∫

Θk,σ

χk|Vε|.

Notice that, since we assumed that Xk is along the direction e1, we have

(9.5) Jε,k,σ = J(et, e1) = Vε · e2 = Vε ·
X⊥k
|Xk|

,

so we may bound ∣∣∣∣∣
∫

Θk,σ

|fk||Xk|χkJε,k,σ

∣∣∣∣∣ ≥
∣∣∣∣∣
∫

Θk,σ

χkfkVε ·X⊥k

∣∣∣∣∣ .
We also observe that∫

Θk,σ

χk|Xk|2|∂wuε − iuεBε,w|2 =

∫
Θk,σ

χk|Xk · (∇uε − iuεBε)|2.
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Plugging in and integrating with respect to σ yields∫
Dk

χk

( |fk|2
Λ
|∂tuε − iuεΦε|2 + Λ|Xk · (∇uε − iuεBε)|2

+ |fk|5|Xk|5M−2
ε |∂tBε,w − ∂wΦε|2

)
≥ (| log ε| − C logMε − log max(Λ,Λ−1))

∣∣∣∣∫
Dk

χkfkVε ·X⊥k
∣∣∣∣− C ∫

Dk

χk|Vε|

− CC̃k,ΛR̃2
k,ΛM

−3/4
ε Fε,k − C(C̃k,Λ + 1)|fk||Xk|| log ε|M−1/2

ε Fε,k,

where Fε,k :=
∫
Fε,k,σdσ. It is important to note that since C̃k,Λ, R̃k,Λ ≤ C for some

constant C depending only on Λ, ‖f‖∞, and ‖X‖∞, this holds as well if fk = 0 or
Xk = 0.

We may next replace Xk by X and fk by f in the first two terms of the left-hand

side and the
∫
Dk
χkfkVε ·X⊥k term, and using that |X −Xk| ≤ CM

−1/4
ε ‖X‖C0,1 and

|f − fk| ≤ CM
−1/4
ε ‖f‖C0,1 , the error thus created is bounded above by

CC(Λ)C0(f,X)C1(f,X)M−1/4
ε | log ε|Fε(Dk),

where C0(f,X) := max{‖f‖∞, ‖X‖∞, 1}, C1(f,X) := max{‖f‖C0,1 , ‖X‖C0,1 , 1},
C(Λ) = max{ 1

Λ
,Λ}, and

Fε(Dk) :=
1

2

∫
Dk

|∂tuε − iuεΦε|2 + |∇uε − iuεBε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2.

Here we have used that by definition of Vε, we have
∫
Dk
|Vε| ≤ CFε,k(Dk). Let us

note that

|fk|5|Xk|5M−2
ε |∂tBε,w−∂wΦε|2 ≤ C0(f,X)10M−2

ε

∫
Dk

| curlAε|2 ≤ 2C0(f,X)10M−2
ε Fε(Dk),

C̃k,Λ ≤ C(Λ)C0(f,X)6, and R̃2
k,Λ ≤ C(Λ)C0(f,X)6. Summing over k, using that∑

k χk = 1 in K (the union of the supports of f and X) and the finite overlap of
the covering, we are led to∫

(0,T )×ω

|f |2

Λ
|∂tuε − iuεΦε|2 + Λ|X · (∇uε − iuεBε)|2

≥
(
| log ε| − C logMε − log max(Λ,Λ−1)

) ∣∣∣∣∫
(0,T )×ω

fVε ·X⊥
∣∣∣∣

− C
∫

(0,T )×ω

∑
k

χk|Vε| − Error(ε,Λ, f,X),
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where

Error(ε,Λ, f,X) = CFε(uε, Aε)
(
C(Λ)C0(f,X)C1(f,X)| log ε|M−1/4

ε + C0(f,X)10M−2
ε

+ C2(Λ)C0(f,X)12M−3/4
ε + C(Λ)C0(f,X)8| log ε|M−1/2

ε

)
.

We may now use Theorem 1.2 (notice that X, f , and χk are compactly supported in
ω× (0, T )) to replace the velocity by its polyhedral approximation. Since we assume
that Fε(uε, Aε) ≤M | log ε|m, Theorem 1.2 with n > 1

3
(2−m) implies that∫

(0,T )×ω
fVε ·X⊥ =

∫
(0,T )×ω

fνε ∧ (−X2dx1 +X1dx2) +O
(
| log ε|−

1
2

(m+3n)
)

and∫
(0,T )×ω

∑
k

χk|Vε| ≤ C

∫
(0,T )×ω

max(|νε ∧ dx1|, |νε ∧ dx2|) +O
(
| log ε|−

1
2

(m+3n)
)
,

which gives∫
(0,T )×ω

|f |2

Λ
|∂tuε − iuεΦε|2 + Λ|X · (∇uε − iuεBε)|2

≥
(
| log ε| − C logMε − log max(Λ,Λ−1)

) ∣∣∣∣∫
(0,T )×ω

fνε ∧ (−X2dx1 +X1dx2)

∣∣∣∣
−C

∫
(0,T )×ω

max(|νε∧dx1|, |νε∧dx2|) +O
(
| log ε|−

1
2

(m+3n)+1
)
−Error(ε,Λ, f,X).

We observe that −1
2
(m + 3n) + 1 < 0 and therefore the error associated to our

approximation goes to zero as ε→ 0. In addition, for ε small enough depending on
Λ, f, and X, we have

max(Λ,Λ−1) ≤Mε and Error(ε,Λ, f,X) = O(| log ε|−
1
2

(m+3n)+1).

This concludes the proof. �

Appendix A. Smooth approximation of the function ζ

In this section we present the proof of Proposition 5.1. We will regularize the
function ζ by convolution. Having into account that we need to provide a quanti-
tative estimate of the second fundamental form of the approximation, we will first
displace a bit the points of the collection. The reason for this is that the displace-
ment will ensure that the vectors ν(i,j) (see Definition 5.1) will satisfy “good” angle
conditions between each other. This will permit us to characterize the set where the
gradient of the convolution is small, which will translate into a control on its second
fundamental form.
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A.1. Displacement of the points. First, we prove some basic geometric prop-
erties which allow us to perform the displacement of the points (see Proposition
A.1).

Lemma A.1. Consider a unit vector ν ∈ R3, a ball B ⊂ R3 of diameter D > 0,
and a point x ∈ B. There exists a universal constant ϑ1 > 0 such that, for any
0 < ϑ ≤ ϑ1, letting Cν,x,D,ϑ denote the infinite cylinder whose axis is parallel to ν
and passes through x, and whose radius is 2Dϑ, we have∣∣∣∣ν × x− y

|x− y|

∣∣∣∣ ≥ ϑ

for any y ∈ B \ Cν,x,D,ϑ.

Proof. Let y ∈ B \ Cν,x,D,ϑ. We recall that∣∣∣∣ν × x− y
|x− y|

∣∣∣∣ = |ν|
∣∣∣∣ x− y|x− y|

∣∣∣∣ | sin θ| = | sin θ|,
where θ is the angle formed by ν and x−y

|x−y| . Since the radius of the cylinder Cν,x,D,ϑ
is 2Dϑ and y 6∈ Cν,x,D,ϑ, from Pythagoras’ theorem we deduce that√

D2 + (2Dϑ)2| sin θ| ≥ 2Dϑ.

Therefore, for any 0 < ϑ ≤ ϑ1, with ϑ1 such that 2/
√

1 + (2ϑ1)2 = 1, we have

| sin θ| ≥ ϑ.

This concludes the proof. �

Lemma A.2. Consider two unit vectors ν1, ν2 ∈ R3 with ν1 6= ±ν2, a ball B ⊂ R3

of diameter D > 0, and a point x ∈ B. Let P be the plane perpendicular to ν1 × ν2

and that passes through x. For any 0 < ϑ ≤ ϑ1, where ϑ1 is as in Lemma A.1,
letting

Pν1,ν2,x,D,ϑ = {y ∈ R3 | d(y, P ) ≤ 2Dϑ},
if |ν1 × ν2| ≥ ϑ then ∣∣∣∣det

(
ν1, ν2,

x− y
|x− y|

)∣∣∣∣ ≥ ϑ2

for any y ∈ B \ Pν1,ν2,x,D,ϑ.

Proof. Let y ∈ B \ Pν1,ν2,x,D,ϑ. We recall that∣∣∣∣det

(
ν1, ν2,

x− y
|x− y|

)∣∣∣∣ =

∣∣∣∣(ν1 × ν2) · x− y
|x− y|

∣∣∣∣ = |ν1 × ν2|
∣∣∣∣ x− y|x− y|

∣∣∣∣ | cos θ| ≥ ϑ| cos θ|,

where θ is the angle formed by ν1 × ν2 and x−y
|x−y| . Since y ∈ B and d(y, P ) ≥ 2Dϑ,

from Pythagoras’ theorem we deduce that√
D2 + (2Dϑ)2| cos θ| ≥ 2Dϑ.
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Therefore, for any 0 < ϑ ≤ ϑ1, we have | cos θ| ≥ ϑ, which implies∣∣∣∣det

(
ν1, ν2,

x− y
|x− y|

)∣∣∣∣ ≥ ϑ2.

�

The previous lemmas allow us to prove the following result.

Proposition A.1. Let A = {a1, . . . , am} be a collection of m not necessarily dis-
tinct points. Define DA := max1≤i<j≤m |ai − aj| to be the maximum Euclidean
distance between any of the points of A and assume that DA > 0. Then there exist
universal constants C1, C > 0 and a collection of points A ′ = {b1, . . . , bm} such
that, for any 0 < ϑ ≤ min{C1m

−5, ϑ1}, where ϑ1 is as in Lemmas A.1 and A.2, the
following hold:

(1) bi 6= bj for any i 6= j.
(2) Define

ν(i,j) :=
bi − bj
|bi − bj|

for (i, j) ∈ Λm := {(p, q) | 1 ≤ p < q ≤ m}.

Then for any α, β, γ ∈ Λm with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

(3) |al − bl| ≤ CDA l
5ϑ for any l ∈ {1, . . . ,m}.

Proof. Let us first observe that, by definition of DA , there exists a closed ball BA

of diameter DA which contains all the points of the collection A .
We proceed by induction. Define b1 = a1 and let 0 < ϑ ≤ min{C1m

−5, ϑ1}, where
C1 is some universal constant to be specified later. Assume that we have defined a
collection {b1, . . . , bl} ⊂ BA with 1 < l < m such that:

• For any α, β, γ ∈ Λl with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

• |ai − bi| ≤ 8DA (i− 1)5ϑ for any i ∈ {1, . . . , l}.
We will next find bl+1 ∈ BA such that the collection {b1, . . . , bl, bl+1} ⊂ BA satisfies
that:

• For any α, β, γ ∈ Λl+1 with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

• |al+1 − bl+1| ≤ 8DA l
5ϑ.

For any i ∈ {1, . . . , l} and α ∈ Λl, let Cνα,bi,DA ,ϑ denote the cylinder defined in
Lemma A.1 with ν = να, B = BA , D = DA , and x = bi. In addition, for any
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i ∈ {1, . . . , l} and α, β ∈ Λl with α 6= β, let Pνα,νβ ,bi,DA ,ϑ denote the set defined in
Lemma A.2 with ν1 = να, ν2 = νβ, B = BA , D = DA , and x = bi. We define

X l
bad :=

 ⋃
i∈{1,...,l}

⋃
α∈Λl

Cνα,bi,DA ,ϑ

⋃ ⋃
i∈{1,...,l}

⋃
α,β∈Λl, α 6=β

Pνα,νβ ,bi,DA ,ϑ

 .

By Lemmas A.1 and A.2, we conclude that, for any y ∈ BA \ X l
bad, the collection

of points {b1, . . . , bl, y} is such that, for any α, β, γ ∈ Λl+1 with α 6= β 6= γ,

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

Let us observe that

|X l
bad| ≤ C(l|Λl|D3

A ϑ+ l|Λl|2D3
A ϑ) ≤ Cl5D3

A ϑ ≤ Cm5ϑ|BA |,

where C is a universal constant. In particular, for some sufficiently small universal
constant C1 > 0, we have

|BA \X l
bad| ≤

1

10
|BA |

for any 0 < ϑ ≤ min{C1m
−5, ϑ1}. By recalling the definition of the radius (resp.

thickness) of Cνα,bi,DA ,ϑ (resp. Pνα,νβ ,bi,DA ,ϑ) and since al+1 ∈ BA , we deduce that

there exists a point bl+1 ∈ BA \X l
bad such that

|al+1 − bl+1| ≤ 2(2DA ϑl
3 + 2DA ϑl

5) ≤ 8DA ϑl
5.

Therefore the collection {b1, . . . , bl, bl+1} satisfies the desired properties. This con-
cludes the proof of the induction step and the proposition is thus proved. �

A.2. Proof of Proposition 5.1.

Proof. Let us begin by defining the function ζλ. Let A ′ = {p′1, . . . , p′k, n′1, . . . , n′k} be
the collection of points given by Proposition A.1 with A = {p1, . . . , pk, n1, . . . , nk}.
Observe that, for any 0 < ϑ ≤ C0(2k)−5, where C0 = min(C1, ϑ1), we have

L(A ′) ≤
k∑
i=1

|p′i − n′i| ≤
k∑
i=1

|pi − ni|+ |pi − p′i|+ |ni − n′i| ≤ L(A ) + CDA (2k)6ϑ.

An analogous argument shows that L(A ) ≤ L(A ′) + CDA (2k)6ϑ. Therefore

(A.1) |L(A )− L(A ′)| ≤ CDA (2k)6ϑ,

where throughout the proof C > 0 denotes a universal constant that may change
from line to line. Remember that by Lemma 5.1 there exists a 1-Lipschitz function
ζ∗ : ∪i=1,...,k{p′i, n′i} → R such that

L(A ′) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i).
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Define the function ζ as in Definition 5.1, i.e. set

ζ(x) := max
i∈{1,...,k}

(
ζ∗(p′i)− max

j∈{1,...,2k}
d(i,j)(x)

)
,

where

d(i,j)(x) := 〈p′i − x, ν(i,j)〉, ν(i,j) =

{
p′i−a′j
|p′i−a′j |

if p′i 6= a′j

0 if p′i = a′j
.

Lemma 5.2 yields that ζ : R3 → R is a 1-Lipschitz function such that

k∑
i=1

ζ(p′i)− ζ(n′i) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i) = L(A ′).

Next, we regularize the function ζ. Let ϕ ∈ C∞c (B(0, 1),R+) be a mollifier such that∫
R3 ϕ(x)dx = 1. Letting

(A.2) λ := ϑ1/ρ for ρ ∈ (0, 1/2),

we define

ζλ(·) := ϕλ ∗ ζ(·) =

∫
R3

ϕλ(· − y)ζ(y)dy with ϕλ(·) =
1

λ
ϕ
( ·
λ

)
.

Argument for the first statement. Observe that ‖ζ− ζλ‖L∞(R3) ≤ λ from which
we deduce that

(A.3)

∣∣∣∣∣L(A ′)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ 2kλ.

By combining (A.1) with (A.3), we obtain

(A.4)

∣∣∣∣∣L(A )−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ CDA (2k)6ϑ+ 2kλ.

On the other hand, note that∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζ(p′i)− ζ(n′i)

∣∣∣∣∣ ≤
k∑
i=1

|pi − ni|+ |p′i − n′i| ≤ CDA (2k)6ϑ.

By combining the previous estimate with (A.3), we get

(A.5)

∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ CDA (2k)6ϑ+ 2kλ.

Then from (A.4) and (A.5), we deduce that∣∣∣∣∣L(A )−
k∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ CDA (2k)6λρ.
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Argument for the second statement. Note that

(A.6) ∇ζλ(x) =

∫
B(x,λ)

ϕλ(x− y)∇ζ(y)dy

for any x ∈ R3. We define

Λ := {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i 6= j}.

Then, letting

ζ(i,j)(·) := ζ(p′i)− d(i,j)(·) for (i, j) ∈ Λ,

observe that, for almost every y ∈ R3,

∇ζ(y) = ν(i,j) if ζ(y) = ζ(i,j)(y) for some (i, j) ∈ Λ.

Since |ν(i,j)| = 1 for any (i, j) ∈ Λ, we have

|∇ζλ(x)| ≤
∫
B(x,λ)

ϕλ(x− y)|∇ζ(y)|dy ≤
∫
B(x,λ)

ϕλ(x− y)dy = 1

for any x ∈ R3.

Argument for the third statement. Let us first prove that there exists a set
Pλ ⊂ R3 such that |ζλ(Pλ)| ≤ 2λk2 and that, for any 0 < κ < ϑ2/3,

Cκ := {x ∈ R3 | |∇ζλ(x)| < κ} \ Pλ
can be covered by Bκ, a collection of at most (2k)8 balls of radius Cλ/(ϑ2 − 3κ).
We will then conclude the desired result from this.

We start by defining the set Pλ. Let us consider indices i, j ∈ {1, . . . , k} with
i 6= j. We let

Pi,j := {y ∈ R3 | ζ(i,j)(y) = ζ(j,i)(y)}
and observe that

Pi,j = {ζ(p′i)− ζ(p′j)− 〈p′i + p′j − 2y, ν(i,j)〉 = 0}.

A simple computation shows that

〈y1 − y2, ν(i,j)〉 = 0

for any y1, y2 ∈ Pi,j with y1 6= y2. This implies that Pi,j is a plane whose normal is
ν(i,j) and therefore

ζ(i,j)(y) = ζ(j,i)(y) =
ζ∗(p′i) + ζ∗(p′j)− 〈p′i + p′j, ν(i,j)〉

2

for any y ∈ Pi,j. We define

Pλ := {y ∈ R3 | d(y, P ) ≤ 2λ}, where P := ∪1≤i<j≤kPi,j.

We immediately check that |ζλ(Pλ)| ≤ Cλk2.
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Let us now give a characterization of the gradient of ζλ. From (A.6), we deduce
that

∇ζλ(x) =
∑
α∈Λ

σανα, where σα =

∫
B(x,λ)

ϕλ(x− y)1{ζ(y)=ζα(y)}dy for α ∈ Λ.

Observe that σα ∈ [0, 1] and
∑

α∈Λ σα = 1. We conclude that, for any x ∈ R3,
∇ζλ(x) can be written as a convex combination of the vectors να’s, α ∈ Λ. By
Caratheodory’s theorem, we deduce that ∇ζλ(x) can be written as a convex combi-
nation of at most four of them.

Now consider a number 0 < κ < ϑ2/3 and a point x ∈ Cκ. We observe that, since

x 6∈ Pλ, if there exists a point y ∈ B(x, λ) and indices i, j ∈ {1, . . . , k} with i 6= j
such that

ζ(y) = ζ(i,j)(y)

then, for any z ∈ B(x, λ),

ζ(z) 6= ζ(j,i)(z).

This implies that ∇ζλ(x) can be written as a convex combination of at most four
vectors, where if one of them happens to be ν(i,j) for some i, j ∈ {1, . . . , k} with
i 6= j then all the other vectors are different from ν(j,i) = −ν(i,j). Recalling that the
points of the collection A ′ are such that

|να × νβ| > ϑ and |det(να, νβ, νγ)| > ϑ2

for any α, β, γ ∈ {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i < j} ( Λ with α 6= β 6= γ, we
deduce that ∇ζλ(x) can be written as a convex combination of at most four vectors
that satisfy these properties.

Let us now show that ∇ζλ(x) cannot be written as a convex combination of three
or fewer of the vectors να’s, α ∈ Λ. We have three cases to consider:

• If there exists α ∈ Λ such that ∇(x)ζλ = να then

|∇ζλ(x)| = |να| = 1.

• If there exist α, β ∈ Λ with α 6= β such that

∇ζλ(x) = σνα + (1− σ)νβ

for some σ ∈ (0, 1), then

|∇ζλ(x)| ≥ max {|∇ζλ(x)× να|, |∇ζλ(x)× νβ|}
= max {(1− σ)|να × νβ|, σ|να × νβ|}

≥ max{σ, 1− σ}ϑ ≥ ϑ

2
.
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• If there exist α, β, γ ∈ Λ with α 6= β 6= γ such that

∇ζλ(x) = σανα + σβνβ + σγνγ

for some numbers σα, σβ, σγ ∈ (0, 1) with σα + σβ + σγ = 1, then, assuming
without loss of generality that σα ≥ 1

3
, we have

|∇ζλ(x)| ≥ σα|να · (νβ × νγ)| = σα|det(να, νβ, νγ)| ≥
ϑ2

3
.

Since x ∈ Cκ and κ < ϑ2

3
we deduce that the three cases considered above cannot

occur. Therefore we conclude that there exist α, β, γ, η ∈ Λ with α 6= β 6= γ 6= η
such that

∇ζλ(x) = σανα + σβνβ + σγνγ + σηνη

for some σα, σβ, σγ, ση ∈ (0, 1) with σα + σβ + σγ + ση = 1.
Let us consider the system of equations

(A.7) ζα(y) = ζβ(y) = ζγ(y) = ζη(y).

We claim that this system admits a unique solution y ∈ R3 which in addition satisfies

|x− y| ≤ Cλ

(ϑ2 − 3κ)
.

Writing ỹ = y−x, we observe that ỹ satisfies the linear system of equations Aỹ = B,
where

A =

 να − νβ
νγ − νβ
νη − νβ

 and B =

 ζα(x)− ζβ(x)
ζγ(x)− ζβ(x)
ζη(x)− ζβ(x)

 .

Let us check that |det(A)| ≥ 4(ϑ2 − 3κ). Note that without loss of generality we
can assume that σα ≤ 1

4
. Observe that

∇ζλ(x)− νβ = σα(να − νβ) + σγ(νγ − νβ) + ση(νη − νβ).

By Cramer’s rule, we have

σα =
det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ)

det(να − νβ, νγ − νβ, νη − νβ)
.

Simple computations show that

det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ) = −det(νβ, νγ, νη) + f(∇ζλ(x)),

where |f(∇ζλ(x))| ≤ 3|∇ζλ(x)| ≤ 3κ. Therefore

|det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ)| ≥ |det(νβ, νγ, νη)| − |f(∇ζλ(x))| ≥ ϑ2 − 3κ.

We deduce that

|det(να − νβ, νγ − νβ, νη − νβ)| = |det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ)|
σα

≥ 4(ϑ2 − 3κ).
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On the other hand, note that there exist xα, xβ, xγ, xη in B(x, λ) such that

ζ(xα) = ζα(xα), ζ(xβ) = ζβ(xβ), ζ(xγ) = ζγ(xγ), ζ(xη) = ζη(xη).

Since

B =

 ζα(x)− ζα(xα) + ζ(xα)− ζ(xβ) + ζβ(xβ)− ζβ(x)
ζγ(x)− ζγ(xγ) + ζ(xγ)− ζ(xβ) + ζβ(xβ)− ζβ(x)
ζη(x)− ζη(xη) + ζ(xη)− ζ(xβ) + ζβ(xβ)− ζβ(x)

 ,

we deduce that |B| ≤ 3λ. Hence the linear system of equations Aỹ = B admits a
unique solution which satisfies

|ỹ| = |y − x| = |A−1B| ≤ Cλ

ϑ2 − 3κ
.

Summarizing, if x ∈ Cκ with 0 < κ < ϑ2/3 then there exist α, β, γ, η ∈ Λ with
α 6= β 6= γ 6= η such that the unique solution y ∈ R3 to (A.7) lies in the ball
B(x,Cλ/(ϑ2−3κ)). We conclude that the set Cκ can be covered by Bκ, a collection

of at most
(|Λ|

4

)
≤ (2k)8 balls of radius Cλ/(ϑ2 − 3κ).

Observing that

|D2ζλ(x)| ≤ C

λ2

for any x ∈ R3, and letting

Tκ = ζλ(∪B∈BκB) ∪ ζλ(Pλ),

we conclude that

|Tκ| ≤ C(2k)8 λ

ϑ2 − 3κ

and that, for any t ∈ R \ Tκ, {x | ζλ(x) = t} is a complete submanifold of R3 whose
second fundamental form is bounded by

C
supR3 |D2ζλ|

infR3\((∪B∈BκB)∪Pλ) |∇ζλ|
≤ C

λ2κ
.

Recalling the relation between λ and ϑ (see (A.2)), the proposition follows. �

Appendix B. Smooth approximation of the function ζ for the
distance through the boundary – First method

In this section of the Appendix we prove Proposition 5.2. We will smoothly
approximate the function ζ for d∂Ω by convolution, after displacing the points ai as
in Appendix A. The main points of the proof are:

• Since ∂Ω is assumed to be of class C2, if we reduce the analysis to a small
neighborhood close to the boundary then the gradient of the distance to the
boundary at every point of this neighborhood is given by the normal to the
boundary at the unique projection to the boundary of this point.
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• We will characterize the set where the distance to the boundary is equal
to one or two of the functions ζi,j’s, while the gradient vectors of these
functions do not satisfy “good” angle conditions between each other in the
sense described in the previous section. One can show that the image of this
set (by our smooth approximation) has small measure. To prove this fact,
we will present an argument based on the curvature of the boundary. The
assumption that ∂Ω is of class C2 gives an upper bound for the maximal
principal curvature at each point of the boundary, which roughly speaking
implies that the boundary “cannot wiggle too much”.
• We will adapt the last part of the proof of Proposition 5.1. Arguing in the

same fashion, but using the inverse function theorem, we can show that the
set where the distance to the boundary is equal to three of the functions ζi,j’s
can be covered by a quantitative number of small balls.

Proof. Let us begin by defining the function ζλ. Let A ′ = {p′1, . . . , p′k, n′1, . . . , n′k} be
the collection of points given by Proposition A.1 with A = {p1, . . . , pk, n1, . . . , nk}.
Observe that DA ≤ diam(Ω). For any 0 < ϑ ≤ C0(2k)−5, where C0 = min(C1, ϑ1),
we have

L∂Ω(A ′) ≤
k∑
i=1

d∂Ω(p′i, n
′
i)| ≤

k∑
i=1

d∂Ω(pi, ni) + d∂Ω(pi, p
′
i) + d∂Ω(ni, n

′
i)

≤ L∂Ω(A ) + Cdiam(Ω)(2k)6ϑ.

An analogous argument shows that L∂Ω(A ) ≤ L∂Ω(A ′) +Cdiam(Ω)(2k)6ϑ. There-
fore

(B.1) |L∂Ω(A )− L∂Ω(A ′)| ≤ C(2k)6ϑ,

where throughout the proof C > 0 denotes a constant depending only on ∂Ω that
may change from line to line.

Remember that by Lemma 5.3 there exists a 1-Lipschitz function ζ∗ : ∪i=1,...,k{p′i, n′i} →
R such that

L∂Ω(A ′) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i).

Define the function ζ for d∂Ω as in Definition 5.2, i.e. set

ζ(x) := max
i∈{1,...,k}

(ζ∗(p′i)− di(x, ∂Ω)) ,

where

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(p′i, ∂Ω)− d(x, ∂Ω)

)
, d(p′i, ∂Ω) + d(x, ∂Ω)

]
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and

d(i,j)(x) := 〈p′i − x, ν(i,j)〉, ν(i,j) =

{
p′i−a′j
|p′i−a′j |

if p′i 6= a′j

0 if p′i = a′j
.

Lemma 5.4 yields that ζ : R3 → R is a 1-Lipschitz function such that

k∑
i=1

ζ(p′i)− ζ(n′i) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i) = L∂Ω(A ′).

Next, we regularize the function ζ. Let ϕ ∈ C∞c (B(0, 1),R+) be a mollifier such that∫
R3 ϕ(x)dx = 1. Letting

(B.2) λ := ϑ1/ρ for ρ ∈ (0, 1/4),

we define

ζλ(·) := ϕλ ∗ ζ(·) =

∫
R3

ϕλ(· − y)ζ(y)dy with ϕλ(·) =
1

λ
ϕ
( ·
λ

)
.

Argument for the first statement. Observe that ‖ζ− ζλ‖L∞(R3) ≤ λ from which
we deduce that

(B.3)

∣∣∣∣∣L∂Ω(A ′)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ 2kλ.

By combining (B.1) with (B.3), we obtain

(B.4)

∣∣∣∣∣L∂Ω(A )−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ C(2k)6ϑ+ 2kλ.

On the other hand, note that∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζ(p′i)− ζ(n′i)

∣∣∣∣∣ ≤
k∑
i=1

|pi − ni|+ |p′i − n′i| ≤ C(2k)6ϑ.

By combining the previous estimate with (B.3), we get

(B.5)

∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ C(2k)6ϑ+ 2kλ.

Then from (B.4) and (B.5), we deduce that∣∣∣∣∣L∂Ω(A )−
k∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ C(2k)6λρ.

Argument for the second statement. Note that, for any x ∈ R3,

(B.6) ∇ζλ(x) =

∫
B(x,λ)

ϕλ(x− y)∇ζ(y)dy.
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Let us observe that, since ∂Ω is assumed to be of class C2, there exists a fixed
number θ0 = θ0(∂Ω) such that if y ∈ Ω satisfies d(y, ∂Ω) < θ0 then

∇d(y, ∂Ω) = ν(zy),

where throughout the proof ν(zy) denotes the outer unit normal vector to ∂Ω at
zy := proj∂Ω(y).

We define

Λ := {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i 6= j} and c := max
i∈{1,...,k}

(ζ∗(p′i)− d(p′i, ∂Ω)).

Then, letting

ζ(i,j)(·) := ζ∗(p′i)− d(i,j)(·) for (i, j) ∈ Λ

ζ+(·) := c+ d(·, ∂Ω)

ζ−(·) := c− d(·, ∂Ω),

observe that, for almost every y ∈ Ω such that d(y, ∂Ω) < θ0,

∇ζ(y) =


ν(i,j) if ζ(y) = ζ(i,j)(y) for some (i, j) ∈ Λ
ν(zy) if ζ(y) = ζ+(y)
−ν(zy) if ζ(y) = ζ−(y).

In particular, |∇ζ(y)| = 1 for almost every y as above. Thus

|∇ζλ(x)| ≤
∫
B(x,λ)

ϕλ(x− y)|∇ζ(y)|dy ≤
∫
B(x,λ)

ϕλ(x− y)dy = 1

for any

(B.7) x ∈ Ωλ = {x ∈ Ω | 2λρ < d(x, ∂Ω) < θ0 − 2λρ}.

Argument for the third statement. Observe that

ζ(x) = c for any x ∈ ∂Ω.

Thus

|ζλ({x ∈ Ω | d(x, ∂Ω) ≤ 2λρ})| ≤ Cλρ.

Argument for the fourth statement. Let us first prove that there exists a set
Pλ ⊂ R3 such that |ζλ(Pλ)| ≤ C(2k)4λ3ρ/4 and that, for any 0 < κ < ϑ2/3,

Cκ := {x ∈ Ωλ | |∇ζλ(x)| < κ} \ Pλ
can be covered by Bκ, a collection of at most C((2k)8 + θ0(2k)6(ϑ2 − 3κ)−3) balls
of radius Cλ/(ϑ2 − 3κ). We will then conclude the fourth statement from this.

We follow the same strategy as in the proof of the third statement of Proposition
5.1. We start by defining the set Pλ. First, we let

PΛ
λ := {z ∈ R3 | d(z, P ) ≤ 2λ},
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where

P := ∪1≤i<j≤kPi,j, Pi,j := {y ∈ R3 | ζ(i,j)(y) = ζ(j,i)(y)}.
Arguing as in the proof of Proposition 5.1, we deduce that |ζλ(PΛ

λ )| ≤ Cλk2.

Let us also define

P dipole
λ,± :=

{
x ∈ Ωλ \ PΛ

λ | there exist y1, y2 ∈ B(x, 2λ), α ∈ Λ such that

ζλ(y1) = ζα, ζλ(y2) = ζ±, and |να ×±ν(zy2)| < ϑ
}

and

P tripole
λ,± :=

{
x ∈ Ωλ\PΛ

λ | there exist y1, y2, y3 ∈ B(x, 2λ), α, β ∈ Λ, α 6= β, such that

ζλ(y1) = ζα, ζλ(y2) = ζβ, ζλ(y3) = ζ±, and | det(να, νβ,±ν(zy3))| < ϑ2
}
.

Finally, we let

Pλ := PΛ
λ ∪ P

dipole
λ,+ ∪ P dipole

λ,− ∪ P tripole
λ,+ ∪ P tripole

λ,− .

We claim that

|ζλ(P dipole
λ,+ ∪ P dipole

λ,− ∪ P tripole
λ,+ ∪ P tripole

λ,− )| ≤ C(2k)4λ3ρ/4,

which in turn implies that

(B.8) |Pλ| ≤ C(2k)4ϑ3/4 = C(2k)4λ3ρ/4.

Our argument is based on the curvature of ∂Ω. Given a point z ∈ ∂Ω, we denote
by kmin(z) the minimal principal curvature of ∂Ω at z. We also denote by rmin(z)
(resp. rmax(z)) the minimal (resp. maximal) principal radii of curvature at z. Let
us observe that since Ω is of class C2, for any point z ∈ ∂Ω, rmin(z) ≥ C > 0.

We next study the sets P dipole
λ,± . Given x ∈ P dipole

λ,± , let us first assume that

|kmin(zy2)| > ϑ1/4. By definition of rmax and by recalling that |v1×v2| = |v1||v2|| sin θ|
with θ being the angle formed by v1 and v2, we deduce that there exists a constant
C1(∂Ω) such that, for any y satisfying

|y2 − y| = C1rmax(zy2)ϑ,

we have

|να ×±ν(zy)| ≥ ϑ.

Moreover, since rmin(zy2) ≥ C > 0, we deduce that there exists C2(∂Ω) such that,
for any

C1rmax(zy2)ϑ ≤ |y2 − y| ≤ C2,

we have

|να ×±ν(zy)| ≥ ϑ.

Noting that rmax(zy2) < 1/ϑ1/4, we deduce that {x ∈ P dipole
λ,± | |kmin(zy2)| > ϑ1/4} can

be covered by vol(Ωλ)C
−3
2 |Λ| balls of radius C1ϑ

3/4.
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Let us now assume that |kmin(zy2)| ≤ ϑ1/4. In this case, the boundary “looks” flat
around zy2 in the principal direction of minimal curvature. This, combined with the
fact that the minimal principal radii of curvature is bounded below, immediately
implies that the number of connected components of {x ∈ P dipole

λ,± | |kmin(zy2)| ≤ ϑ1/4}
is bounded above by a constant that only depends on ∂Ω. Then, it is not hard to
see that

|ζλ({x ∈ P dipole
λ,± | |kmin(zy2)| ≤ ϑ1/4})| ≤ Cϑ.

Thus

|ζλ(P dipole
λ,± )| ≤ C(2k)2ϑ3/4.

Let us now study the sets P tripole
λ,± . By recalling that | det(v1, v2, v3)| = |(v1 × v2) ·

v3| = |v1 × v2||v3|| cos θ| with θ being the angle formed by v1 × v2 and v3, arguing
similarly as above one can check that

{x ∈ P tripole
λ,± | |kmin(zy3)| > ϑ1/4}

can be covered by vol(Ωλ)C̃
−3
2

(|Λ|
2

)
balls of radius C̃1ϑ

3/4. Moreover, arguing as
above we deduce that

|ζλ({x ∈ P tripole
λ,± | |kmin(zy3)| ≤ ϑ1/4})| ≤ Cϑ.

Thus

|ζλ(P tripole
λ,± )| ≤ C(2k)4ϑ3/4,

which concludes the proof of the claim.

Let us now give a characterization of the gradient of ζλ for points x ∈ Ωλ. From
(B.6), we deduce that

(B.9) ∇ζλ(x) =
∑
α∈Λ

σανα +

∫
B(x,λ)

ϕλ(x− y)ν(zy)1ζ(y)=ζ+(y)dy

+

∫
B(x,λ)

ϕλ(x− y)(−ν(zy))1ζ(y)=ζ−(y)dy,

where

σα =

∫
B(x,λ)

ϕλ(x− y)1ζ(y)=ζα(y)dy for α ∈ Λ.

Let us observe that if there exists a point x ∈ Ωλ such that ζλ(x) = ±d(x, ∂Ω) then
for any y ∈ B(x, λ), ζλ(y) 6= ∓d(y, ∂Ω). This implies that if the second term in
the right-hand side of (B.9) is different from zero then the third term vanishes, and
viceversa. For this reason, without loss of generality we assume in what follows that
the third term in the right-hand side of (B.9) vanishes.
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Let us observe that, if there exists yx ∈ B(x, λ) such that ζλ(yx) = d(yx, ∂Ω) then∫
B(x,λ)

ϕλ(x− y)ν(zy)1ζ(y)=ζ+(y)dy = ν(zyx)

∫
B(x,λ)

ϕλ(x− y)1ζ(y)=ζ+(y)dy

+

∫
B(x,λ)

ϕλ(x− y)(ν(zy)− ν(zyx))1ζ(y)=ζ+(y)dy,

but |ν(zy)− ν(zyx)| ≤ Cλ, and therefore∫
B(x,λ)

ϕλ(x− y)ν(zy)1ζ(y)=ζ+(y)dy = σ+(1 +O(λ))ν(zyx),

where

σ+ :=

∫
B(x,λ)

ϕλ(x− y)1ζ(y)=ζ+(y)dy.

Thus, (B.9) can be written as

∇ζλ(x) =
∑
α∈Λ

σανα + σ+(1 +O(λ))ν(zyx),

where yx is arbitrarily chosen among the points in y ∈ B(x, λ) such that ζλ(y) =
d(y, ∂Ω).

Now consider a number 0 < κ < ϑ2/3 and a point x ∈ Cκ. We write

∇ζλ(x) =
∑
α∈Λ

σανα + σ+(1 +O(λ))ν(zyx)

and observe that since x 6∈ PΛ
λ , if σ(i,j) > 0 for some (i, j) ∈ Λ then σ(j,i) = 0.

We will consider two cases. First, if σα = 0 then, arguing exactly as in the proof
of Proposition 5.1, we conclude that there exist α, β, γ, η ∈ Λ with α 6= β 6= γ 6= η
such that

∇ζλ(x) = σανα + σβνβ + σγνγ + σηνη

for some σα, σβ, σγ, ση ∈ (0, 1) with σα + σβ + σγ + ση = 1, and

| det(να − νβ, νγ − νβ, νη − νβ)| ≥ 3(ϑ2 − 3κ).

Therefore the unique solution y ∈ R3 to (A.7) lies in the ball B(x,Cλ/(ϑ2 − 3κ)).

Second, if σα > 0 then, using the fact that x 6∈ Pλ \ PΛ
λ and arguing as in the

proof of Proposition 5.1, we conclude that

∇ζλ(x) = σ+(1 +O(λ))ν(zyx) + σανα + σβνβ + σγνγ,

for some σ+, σα, σβ, σγ ∈ (0, 1) with σ+ + σα + σβ + σγ = 1, and

(B.10) | det(ν(zyx)− νβ, να − νβ, νγ − νβ)| ≥ 3(ϑ2 − 3κ).

Let us consider the function Φ : Ωλ → R3 defined via

Φ(·) = (ζ+ − ζβ, ζα − ζβ, ζγ − ζβ)(·).
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Observe that

DΦ(x) = (ν(zyx)− νβ, να − νβ, νγ − νβ),

whose determinant satisfies (B.10). Moreover, by noting that

|DΦ(x)−DΦ(y)| = |(ν(zyx)− ν(zy), 0, 0)|,

we easily deduce that

(B.11) | det(ν(zy)− νβ, να − νβ, νγ − νβ)| ≥ (ϑ2 − 3κ)

for any y ∈ B(x,C(ϑ2 − 3κ)). Let us observe that our definition of Ωλ (see (B.7))
guaranties that B(x,C(ϑ2 − 3κ)) ⊂ B(x,Cλ2ρ) ⊂ {x ∈ Ω | d(x, ∂Ω) < θ0} for any
sufficiently small λ. We also observe that, since there exist x+, xα, xβ, xγ ∈ B(x, λ)
such that

ζ(x+) = ζ+(x+), ζ(xα) = ζα(xα), ζ(xβ) = ζβ(xβ), ζ(xγ) = ζγ(xγ),

we have

(B.12) |Φ(x)| ≤ Cλ.

From a “quantitative version” of the inverse function theorem (see [Lan93, Chapter
XIV, Lemma 1.3]), we conclude that Φ is invertible in B(x,C(ϑ2 − 3κ)), and since
λ� ϑ4 (recall that ρ < 1/4), 0 ∈ Φ(B(x,C(ϑ2 − 3κ)). In particular, there exists a
unique y ∈ B(x,C(ϑ2 − 3κ)) such that Φ(y) = 0. Moreover

|x− y| = |Φ−1(Φ(x))− Φ−1(0)| ≤ |DΦ−1(z)||Φ(x)− 0|

for some z ∈ Φ(B(x,C(ϑ2 − 3κ)). This, combined with (B.11) and (B.12), gives

|x− y| ≤ Cλ

ϑ2 − 3κ
.

This means that the unique solution to Φ(y) = 0 in the ball B(x,C(ϑ2 − 3κ)) lies
in the much smaller ball B(x, Cλ

ϑ2−3κ
).

Since Ωλ can be covered by Cθ0(ϑ2 − 3κ)−3 balls of radius ϑ2 − 3κ, we deduce
that Cκ can be covered by Bκ, a collection of at most(

|Λ|
4

)
+ Cθ0(ϑ2 − 3κ)−3

(
|Λ|
3

)
balls of radius Cλ/(ϑ2 − 3κ).

Observing that

|D2ζλ(x)| ≤ C

λ2

for any x ∈ Ωλ, and letting

Tκ := ζλ(∪B∈BκB) ∪ ζλ(Pλ),
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we conclude that (recall (B.8))

|Tκ| ≤ C

(
(2k)8 λ

ϑ2 − 3κ
+ (2k)6 λ

(ϑ2 − 3κ)4
+ (2k)4λ3ρ/4

)
and that, for any t ∈ ζλ(Ωλ) \ Tκ, {x | ζλ(x) = t} is a complete submanifold of R3

whose second fundamental form is bounded by

C
supΩλ

|D2ζλ|
infΩλ\((∪B∈BκB)∪Pλ) |∇ζλ|

≤ C

λ2κ
.

Recalling the relation between λ and ϑ (see (B.2)), the proposition follows. �

Appendix C. Smooth approximation of the function ζ for the
distance through the boundary – Second Method

In this section of the Appendix we prove Proposition 5.3. By assuming that
the Gauss curvature of the boundary of Ω is strictly positive, we will provide a
convex polyhedral approximation of ∂Ω, very close in Hausdorff distance. We will
then smoothly approximate the function ζ for the distance through the polyhedral
approximation of ∂Ω by convolution, after performing a suitable displacement of the
points of the collection. The main points of the proof are:

• The commodity of replacing the boundary of the domain by a convex poly-
hedron is that, where well-defined, the gradient of the function distance to
the polyhedron is equal to the normal to one of its faces.
• The strategy of proof is very similar to the one followed to prove Proposition

5.1. But in this case to study the set of points whose gradient is small, we
need to ensure that the normals to the faces of the convex polyhedral approx-
imation of ∂Ω and the vectors ν(i,j) satisfy “good” angle conditions between
each other. To accomplish this we will carefully choose the approximating
convex polyhedron, and then perform a displacement of the points of the
configuration A .

C.1. Polyhedral approximation of the boundary. We denote by X = {x1, . . . , xn}
a collection of points belonging to ∂Ω such that

(C.1)
3

2
τ ≤ min

1≤i 6=j≤n
d(xi, xj) and ∀z ∈ ∂Ω, d(z, xi) ≤

5

2
τ for some xi ∈X ,

where from now on d denotes the geodesic distance on ∂Ω and τ ∈ (0, 1) is a given
number. For any xi ∈X let us denote by ν(xi) the outer unit normal to ∂Ω. Define

ΩX := ∩1≤i≤n{z | 〈z − xi, ν(xi)〉 < 0}.

It is easy to see that ∂ΩX is a polyhedral approximation of ∂Ω which in addition is
convex if Ω is convex.
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In the next lemma we show that the points of the collection X can be displaced
in order to make the normals ν(xi)’s satisfy “good” angle conditions between each
other, when Ω is assumed to have strictly positive Gauss curvature.

Lemma C.1. Let Ω be a C2 domain and assume that ∂Ω has strictly positive Gauss
curvature. Let X = {x1, . . . , xn} be a collection of points belonging to ∂Ω sat-
isfying (C.1) for a number τ ∈ (0, 1). Then there exist constants τ0, C0, C > 0
depending only on ∂Ω, such that for any 0 < τ < τ0 there exists a collection
X ′ = {y1, . . . , yn} ⊂ ∂Ω such that, for any 0 < ϑ ≤ C0τ

5, the following hold:

(1) τ ≤ min1≤i 6=j≤n d(yi, yj) and, for any z ∈ ∂Ω, d(z, yi) ≤ 3τ for some yi ∈X ′.
(2) Letting

ΩX ′ := ∩1≤i≤n{z | 〈z − yi, ν(yi)〉 < 0},
where ν(yi) is the outer unit normal to ∂Ω at yi, we have

|d(z, ∂ΩX ′)− d(z, ∂Ω)| ≤ Cτ 2 for any z ∈ R3.

(3) For any i, j, k ∈ {1, . . . , n} with i 6= j 6= k, we have

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2.

Proof. Since we assume that ∂Ω has strictly positive Gauss curvature, we deduce
that there exists a constant κ0(∂Ω) > 0 such that for any point x ∈ ∂Ω the minimal
principal curvature of ∂Ω at x is bounded below by κ0. In addition, since ∂Ω is
assumed to be of class C2, we deduce that for any point x ∈ ∂Ω the maximal
principal curvature of ∂Ω at x is bounded above by a certain constant K0(∂Ω) > 0.
From these two facts, we deduce that there exists constants ϑ0, C1 > 0 depending
only on ∂Ω, such that for any x ∈ ∂Ω and for any 0 < ϑ < ϑ0, if v ∈ R3 with |v| = 1
satisfies

θ(v, ν(x)) < ϑ,

where θ(v, ν(x)) is the angle formed by v and ν(x), then for any y ∈ ∂Ω satisfying

C1κ
−1
0 ϑ ≤ d(x, y) ≤ C−1

1 K−1
0 ,

we have

θ(v, ν(y)) ≥ ϑ.

Since |v1× v2| = |v1||v2|| sin θ| with θ being the angle formed by v1 and v2, we easily
deduce that, up to an adjustment of C1, for any x ∈ ∂Ω and for any 0 < ϑ ≤ ϑ0, if
v ∈ R3 with |v| = 1 is such that

|v × ν(x)| < ϑ,

then, letting

Dx,ϑ = {y ∈ ∂Ω | C1κ
−1
0 ϑ ≤ d(x, y) ≤ C−1

1 K−1
0 },

we have

|v × ν(y)| ≥ ϑ
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for any y ∈ Dx,ϑ.
On the other hand, by recalling that | det(v1, v2, v3)| = |v1 × v2||v3|| cos θ| with θ

being the angle formed by v1 × v2 and v3, we deduce that, up a further adjustment
of C1, for any x ∈ ∂Ω and for any 0 < ϑ ≤ ϑ0, if v, w ∈ R3 with |v| = |w| = 1 are
such that

|v × w| ≥ ϑ and | det(v, w, ν(x))| < ϑ2,

then for any y ∈ Dx,ϑ we have

| det(v, w, ν(y))| ≥ ϑ2.

Given a point x ∈ ∂Ω and a unit vector v ∈ R3, we define

Dx,v,ϑ = {y ∈ ∂Ω | d(x, y) ≤ K−1
0 , |v × ν(y)| < ϑ}.

By the previous arguments, we deduce that Dx,v,ϑ = ∅ or

Dx,v,ϑ ⊆ Bd(yx, C
−1
1 K−1

0 ) \Dyx,ϑ

for some yx ∈ ∂Ω, where Bd(yx, C
−1K−1

0 ) denotes a ball (with respect to the distance
d) centered at yx of radius C−1

1 K−1
0 . In particular, |Dx,v,ϑ| ≤ Cϑ2, where hereafter

C denotes a constant depending only on ∂Ω that may change from line to line.
Let us also define, given a point x ∈ ∂Ω and unit vectors v1, v2 ∈ R3 with |v1×v2| ≥

ϑ, the set

Tx,v1,v2,ϑ = {y ∈ ∂Ω | d(x, y) ≤ K−1
0 , | det(v1, v2, ν(y))| < ϑ2}.

Arguing as above, we deduce that |Tx,v1,v2,ϑ| ≤ Cϑ2.

We will now proceed by induction. Define y1 = x1 and let 0 < ϑ ≤ C0τ
−5 with

C0 = min(1, ϑ0). Assume that we have defined a collection {y1, . . . , yl} ⊂ ∂Ω with
1 < l < n, such that for any i, j, k ∈ {1, . . . , l} with i 6= j 6= k, we have

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2

and d(xi, yi) ≤ di := C1κ
−1
0 ((i− 1)ϑ+ (i− 1)2ϑ) for any i ∈ {1, . . . , l}.

We will next find a point yl+1 ∈ ∂Ω with d(xl+1, yl+1) ≤ dl+1, such that the
collection {y1, . . . , yl, yl+1} ⊂ ∂Ω satisfies

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2

for any i, j, k ∈ {1, . . . , l + 1} with i 6= j 6= k.
Let us define

X l+1
bad :=

 ⋃
i∈{1,...,l}

Dxl+1,ν(yi),ϑ

⋃ ⋃
i,j∈{1,...,l}, i 6=j

Txl+1,ν(yi),ν(yj),ϑ

 .

Note that, for any y ∈ Bd(xl+1, K
−1
0 ) \X l+1

bad , the collection of points {y1, . . . , yl, y}
satisfies

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2
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for any i, j, k ∈ {1, . . . , l+ 1} with i 6= j 6= k. Moreover, by definition of Dxl+1,ν(yi),ϑ

and Txl+1,ν(yi),ν(yj),ϑ, we deduce that we can find a point yl+1 ∈ Bd(xl+1, K
−1
0 )\X l+1

bad ,
which in addition satisfies

d(xl+1, yl+1) ≤ C1κ
−1
0 (lϑ+ l2ϑ).

This concludes the induction step and the proof of the third assertion. Let us now
observe that, for any l ∈ {1, . . . , n}, we have

dl ≤ Cn2ϑ.

By noting that n ≤ cτ−2 for some universal constant c > 0, we get

dl ≤ Cτ−4ϑ ≤ CC0τ.

Therefore, up to an adjustment of C0, we have that dl ≤ 1
4
τ , which ensures that

the first assertion holds. Finally, see [Gru93, Theorem 4] for a proof of the second
statement. This concludes the proof of the lemma. �

C.2. Displacement of the points. With the aid of Lemmas A.1, A.2, and C.1,
we perform the displacement of the points of the collection A .

Proposition C.1. Let Ω be a C2 domain and assume that ∂Ω has strictly positive
Gauss curvature. Let A = {a1, . . . , am} ⊂ Ω be a collection of m not necessarily
distinct points. Consider a collection X = {x1, . . . , xn} ⊂ ∂Ω satisfying (C.1)
and let X ′ = {y1, . . . , yn} ⊂ ∂Ω be the collection of points given by Lemma C.1
for a number τ < τ0, where τ0 is the constant appearing in the lemma. Then
there exist constants C0, C1 > 0 depending only on ∂Ω and a collection of points
A ′ = {b1, . . . , bm} ⊂ Ω such that, for any

ϑ < C0 min{m−5,m−3τ 2,m−1τ 4, τ 5},

the following hold:

(1) bi 6= bj for any i 6= j.
(2) Define

ν(i,j) :=
bi − bj
|bi − bj|

for (i, j) ∈ Λm := {(p, q) | 1 ≤ p < q ≤ m}

and

V := {ν(i,j) | (i, j) ∈ Λm} ∪ {ν(yi) | yi ∈X ′}.

Then for any u, v, w ∈ V with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.

(3) |al − bl| ≤ C1(l5 + l3τ−2 + lτ−4)ϑ for any l ∈ {1, . . . ,m}.
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Proof. First, let us observe that Lemmas A.1 and A.2 hold as well if we replace B
by Ω and D by DΩ := diam(Ω). Let 0 < ϑ ≤ C0 min{m−5,m−3τ 2,m−1τ 4, τ 5} with
C0 sufficiently so that we can apply Lemmas A.1, A.2, and C.1. In particular, for
any i, j, k ∈ {1, . . . , n} with i 6= j 6= k, we have

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2.

We proceed by induction. We let b1 = a1 and assume that we have defined a
collection {b1, . . . , bl} ⊂ Ω with 1 ≤ l < m such that:

• Letting

Vl = {ν(i,j) | (i, j) ∈ Λl} ∪ {ν(yi) | yi ∈X ′},

for any u, v, w ∈ Vl with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.

• |ai − bi| ≤ C1((i− 1)5 + (i− 1)3τ−2 + (i− 1)τ−4)ϑ for any i ∈ {1, . . . , l}, for
some constant C1 depending only on ∂Ω.

We will next find bl+1 ∈ Ω such that the collection {b1, . . . , bl, bl+1} ⊂ Ω satisfies
that:

• For any u, v, w ∈ Vl+1 with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.

• |al+1 − bl+1| ≤ C1(l5 + l3τ−2 + lτ−4)ϑ.

First, for any i ∈ {1, . . . , l} and α ∈ Λl, let Cνα,bi,DΩ,ϑ denote the cylinder defined
in Lemma A.1 with ν = να, B replaced by Ω, D replaced by DΩ, and x = bi. In
addition, for any i ∈ {1, . . . , l} and α, β ∈ Λl with α 6= β, let Pνα,νβ ,bi,DΩ,ϑ denote
the set defined in Lemma A.2 with ν1 = να, ν2 = νβ, B replaced by Ω, D replaced
by DΩ, and x = bi. We define

X l
bad,1 :=

 ⋃
i∈{1,...,l}

⋃
α∈Λl

Cνα,bi,DΩ,ϑ

⋃ ⋃
i∈{1,...,l}

⋃
α,β∈Λl, α 6=β

Pνα,νβ ,bi,DΩ,ϑ

 .

By Lemmas A.1 and A.2, we conclude that, for any y ∈ Ω \X l
bad,1, the collection of

points {b1, . . . , bl, y} is such that, for any α, β, γ ∈ Λl+1 with α 6= β 6= γ,

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

Second, for any i ∈ {1, . . . , l} and j ∈ {1, . . . , n}, let Cν(yj),bi,DΩ,ϑ denote the
cylinder defined in Lemma A.1 with ν = ν(yj), B replaced by Ω, D replaced by DΩ,
and x = bi. In addition, for any i ∈ {1, . . . , l} and j, k ∈ {1, . . . , n} with j 6= k, let
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Pν(yj),ν(yk),bi,DΩ,ϑ denote the set defined in Lemma A.2 with ν1 = ν(yj), ν2 = ν(yk),
B replaced by Ω, D replaced by DΩ, and x = bi. We define

X l
bad,2 :=

 ⋃
i∈{1,...,l}

⋃
j∈{1,...,n}

Cν(yj),bi,DΩ,ϑ

⋃ ⋃
i∈{1,...,l}

⋃
j,k∈{1,...,n}, j 6=k

Pν(yj),ν(yk),bi,DΩ,ϑ

 .

By Lemmas A.1 and A.2, we conclude that, for any y ∈ Ω \X l
bad,2, the collection of

points {b1, . . . , bl, y} is such that, for any α ∈ Λl+1 and j, k ∈ {1, . . . , n} with j 6= k,

|να × ν(yj)| ≥ ϑ and |det(να, ν(yj), ν(yk))| ≥ ϑ2.

Third, for any i ∈ {1, . . . , l}, j ∈ {1, . . . , n}, and α ∈ Λl, let Pνα,ν(yj),bi,DΩ,ϑ denote
the set defined in Lemma A.2 with ν1 = να, ν2 = ν(yj), B replaced by Ω, D replaced
by DΩ, and x = bi. We define

X l
bad,3 :=

⋃
i∈{1,...,l}

⋃
j∈{1,...,n}

⋃
α∈Λl

Pνα,ν(yj),bi,DΩ,ϑ.

By Lemmas A.1 and A.2, we conclude that, for any y ∈ Ω \X l
bad,3, the collection of

points {b1, . . . , bl, y} is such that, for any α, β ∈ Λl+1 with α 6= β and j ∈ {1, . . . , n},

|det(να, νβ, ν(yj))| ≥ ϑ2.

Finally, we let X l
bad = X l

bad,1 ∪ X l
bad,2 ∪ X l

bad,3 and observe that, for any y ∈
Ω \ X l

bad, the collection of points {b1, . . . , bl, y} is such that, for any u, v, w ∈ Vl+1

with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.

Let us note that

|X l
bad| ≤ C(l|Λl|+ l|Λl|2 + ln+ ln2 + ln|Λl|)ϑ ≤ C(l5 + l3n+ ln2)ϑ,

where C > 0 is a constant that depends only on ∂Ω. By recalling that n ≤ cτ−2 for
some universal constant c > 0 and arguing as in the proof of Proposition A.1, we
deduce that, up to an adjustment of the constant C0, we have

|Ω \X l
bad| ≤

1

10
|Ω|

for any 0 < ϑ ≤ C0 min{m−5,m−3τ 2,m−1τ 4, τ 5}. In addition, since al+1 ∈ Ω, we
deduce that there exists a point bl+1 ∈ Ω \X l

bad such that

|al+1 − bl+1| ≤ C1(l5 + l3τ−2 + lτ−4)ϑ,

where C1 is a constant that depends only on ∂Ω. We conclude that the collection
{b1, . . . , bl, bl+1} satisfies the desired properties. This ends the proof of the induction
step and the proposition is thus proved. �
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C.3. Proof of Proposition 5.3.

Proof. Let us begin by defining the function ζλ. Let X = {x1, . . . , xn} ⊂ ∂Ω be
a collection of points satisfying (C.1) for a number τ ∈ (0, 1). Apply Lemma C.1
to obtain a collection X ′ = {y1, . . . , yn} for 0 < τ < τ0, where τ0 is the constant
appearing in the statement of the lemma. Then apply Proposition C.1 with the
collection of points A ⊂ Ω to obtain a collection A ′ = {p′1, . . . , p′k, n′1, . . . , n′k} ⊂ Ω.
For any

ϑ < C0 min{(2k)−5, (2k)−5τ 2, (2k)−1τ 4, τ 5},
where C0 = C0(∂Ω) is the constant appearing in the statement of the proposition,
we have

L∂Ω(A ′) ≤
k∑
i=1

d∂Ω(p′i, n
′
i) ≤

k∑
i=1

d∂Ω(pi, ni) + d∂Ω(pi, p
′
i) + d∂Ω(ni, n

′
i)

≤ L∂Ω(A ) + C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ,

where throughout the proof C denotes a constant depending only on ∂Ω, that may
change from line to line. An analogous argument shows that

L∂Ω(A ) ≤ L∂Ω(A ′) + C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ.

Therefore

(C.2) |L∂Ω(A )− L∂Ω(A ′)| ≤ C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ.

Remember that by Lemma 5.3 there exists a 1-Lipschitz function ζ∗ : ∪i=1,...,k{p′i, n′i} →
R such that

L∂Ω(A ′) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i).

Define the function ζ for d∂Ω as in Definition 5.2, i.e. set

ζ(x) := max
i∈{1,...,k}

(ζ∗(p′i)− di(x, ∂Ω)) ,

where

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(p′i, ∂Ω)− d(x, ∂Ω)

)
, d(p′i, ∂Ω) + d(x, ∂Ω)

]
and

d(i,j)(x) := 〈p′i − x, ν(i,j)〉, ν(i,j) =

{
p′i−a′j
|p′i−a′j |

if p′i 6= a′j

0 if p′i = a′j
.

Lemma 5.4 yields that ζ : R3 → R is a 1-Lipschitz function such that

k∑
i=1

ζ(p′i)− ζ(n′i) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i) = L∂Ω(A ′).
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Recall that by Lemma C.1, letting

ΩX ′ := ∩1≤l≤n{z | 〈z − yl, ν(yl)〉 < 0},

where ν(yl) is the outer unit normal to ∂Ω at yl, we have

(C.3) |d(x, ∂ΩX ′)− d(x, ∂Ω)| ≤ Cτ 2 for any x ∈ R3.

Observe that, since Ω is convex, Ω ⊂ ΩX ′ and that for any x ∈ ΩX ′

d(x, ∂ΩX ′) = min
1≤l≤n

〈yl − x, ν(yl)〉.

In order to take advantage of this fact, we define a new function by replacing the
distance to ∂Ω with the distance to ∂ΩX ′ . More precisely, we let

ζ̃(x) := max
i∈{1,...,k}

(ζ∗(p′i)− di(x, ∂ΩX ′)).

From (C.3), we deduce that

(C.4)

∣∣∣∣∣L∂Ω(A ′)−
k∑
i=1

ζ̃(p′i)− ζ̃(n′i)

∣∣∣∣∣ ≤ C(2k)τ 2.

Next, we regularize the function ζ̃. Let ϕ ∈ C∞c (B(0, 1),R+) be a mollifier such that∫
R3 ϕ(x)dx = 1. Letting

(C.5) λ := ϑ1/ρ for ρ ∈ (0, 1/2),

we define

ζλ(·) := ϕλ ∗ ζ̃(·) =

∫
R3

ϕλ(· − z)ζ̃(z)dz with ϕλ(·) =
1

λ
ϕ
( ·
λ

)
.

Argument for the first statement. Observe that ‖ζ̃−ζλ‖L∞(R3) ≤ λ. We deduce
that

(C.6)

∣∣∣∣∣
k∑
i=1

ζ̃(p′i)− ζ̃(n′i)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ 2kλ.

By combining (C.2) with (C.4) and (C.6), we obtain
(C.7)∣∣∣∣∣L∂Ω(A )−

k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ C(((2k)6 + (2k)4τ−2 + (2k)2τ−4)ϑ+ 2k(τ 2 + λ)).

On the other hand, note that∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζ(p′i)− ζ(n′i)

∣∣∣∣∣ ≤
k∑
i=1

|pi − ni|+ |p′i − n′i|

≤ C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ.
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By combining the previous estimate with (C.4) and (C.6), we get
(C.8)∣∣∣∣∣

k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ C(((2k)6+(2k)4τ−2+(2k)2τ−4)ϑ+2k(τ 2+λ)).

Then from (C.7) and (C.8), we deduce that∣∣∣∣∣L∂Ω(A )−
k∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ C(((2k)6 + (2k)4τ−2 + (2k)2τ−4)λρ + 2kτ 2).

Argument for the second statement. Note that

(C.9) ∇ζλ(x) =

∫
B(x,λ)

ϕλ(x− z)∇ζ̃(z)dz

for any x ∈ R3. We define

Λ := {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i 6= j} and c := max
i∈{1,...,k}

(ζ∗(p′i)−d(p′i, ∂ΩX ′)).

Then, letting

ζ(i,j)(·) := ζ∗(p′i)− d(i,j)(·) for (i, j) ∈ Λ,

ζl,+(·) := c+ 〈· − yl, ν(yl)〉 for l ∈ {1, . . . , n},
ζl,−(·) := c− 〈· − yl, ν(yl)〉 for l ∈ {1, . . . , n},

observe that, for almost every z ∈ ΩX ′ ,

∇ζ̃(z) =


ν(i,j) if ζ̃(z) = ζ(i,j)(z) for some (i, j) ∈ Λ

ν(yl) if ζ̃(z) = ζl,+(z) for some l ∈ {1, . . . , n}
−ν(yl) if ζ̃(z) = ζl,−(z) for some l ∈ {1, . . . , n}.

In particular |∇ζ̃(z)| = 1 for almost every z ∈ ΩX ′ . Thus

|∇ζλ(x)| ≤
∫
B(x,λ)

ϕλ(x− z)|∇ζ̃(z)|dz ≤
∫
B(x,λ)

ϕλ(x− z)dz = 1

for any x ∈ Ωλ = {x ∈ Ω | 2λ < d(x, ∂Ω)}.

Argument for the third statement. Observe that

ζ̃(x) = c for any x ∈ ∂ΩX ′ .

Thus

|ζλ(Ω \ Ωλ)| ≤ C(τ 2 + λ).

Argument for the fourth statement. Let us first prove that there exists a set
Pλ ⊂ R3 such that |ζλ(Pλ)| ≤ 2λk2 and that, for any 0 < κ < ϑ2/3,

Cκ := {x ∈ Ωλ | |∇ζλ(x)| < κ} \ Pλ
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can be covered by Bκ, a collection of at most C((2k)8+τ−8) balls of radius Cλ/(ϑ2−
3κ). We will then conclude the desired result from this.

We start by defining the set Pλ. We let

Pλ := {z ∈ R3 | d(z, P ) ≤ 2λ},

where

P := ∪1≤i<j≤kPi,j, Pi,j := {z ∈ R3 | ζ(i,j)(z) = ζ(j,i)(z)}.
Arguing as in the proof of Proposition 5.1, we deduce that |ζλ(Pλ)| ≤ Cλk2.

Let us now give a characterization of the gradient of ζλ for points x ∈ Ωλ. From
(C.9), we deduce that

∇ζλ(x) =
∑
α∈Λ

σανα +
n∑
l=1

σl,+ν(yl) +
n∑
l=1

σl,−(−ν(yl)),

where

σα =

∫
B(x,λ)

ϕλ(x− z)1ζ̃(z)=ζα(z)dz for α ∈ Λ,

σl,+ =

∫
B(x,λ)

ϕλ(x− z)1ζ̃(z)=ζl,+(z)dz for l ∈ {1, . . . , n},

σl,− =

∫
B(x,λ)

ϕλ(x− z)1ζ̃(z)=ζl,−(z)dz for l ∈ {1, . . . , n}.

Observe that σα, σl,+, σl,− ∈ [0, 1] and that
∑

α∈Λ σα+
∑n

l=1 σl,+ +
∑n

l=1 σl,− = 1. We
conclude that, for any x ∈ Ωλ, ∇ζλ(x) can be written as a convex combination of the
vectors να’s, ν(yl)’s, and −ν(yl)’s with α ∈ Λ, l ∈ {1, . . . , n}. By Caratheodory’s
theorem, we deduce that ∇ζλ(z) can be written as a convex combination of at most
four of them.

Now consider a number 0 < κ < ϑ2/3 and a point x ∈ Cκ. We observe that, since

x 6∈ Pλ, if there exists a point y ∈ B(x, λ) and indices i, j ∈ {1, . . . , k} with i 6= j
such that

ζ(y) = ζ(i,j)(y)

then, for any z ∈ B(x, λ),

ζ(z) 6= ζ(j,i)(z).

On the other hand, since x ∈ Ωλ, if there exist a point z+ ∈ B(x, λ) and an index
l ∈ {1, . . . , n} such that

ζ̃(z+) = ζl,+(z+)

then, for any z ∈ B(x, λ),

ζ̃(z) 6= ζl,−(z).
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Arguing by contradiction, assume that there exist points z+, z− ∈ B(x, λ) and an
index l ∈ {1, . . . , n} such that

ζ̃(z+) = ζl,+(z+) and ζ̃(z−) = ζl,−(z−).

Observe that

|ζ̃(z+)− ζ̃(z−)| ≤ λ and |ζl,−(z−)− ζl,−(z+)| ≤ λ

and that

|ζl,+(z+)− ζl,−(z+)| = 2d(z+, ∂ΩX ′) ≥ 2d(z+, ∂Ω) > 2λ,

but

|ζl,+(z+)− ζl,−(z+)| = |ζ̃(z+)− ζ̃(z−) + ζl,−(z−)− ζl,−(z+)| ≤ 2λ,

which yields a contradiction with the previous computation.
Analogously, if there exist a point z− ∈ B(x, λ) and an index l ∈ {1, . . . , n} such

that

ζ̃(z−) = ζl,−(z−)

then, for any z ∈ B(x, λ),

ζ̃(z) 6= ζl,+(z).

This implies that ∇ζλ(x) can be written as a convex combination of at most four
vectors, where if one them happens to be ν(i,j) for some i, j ∈ {1, . . . , k} with i 6= j
then all the other vectors are different from ν(j,i) = −ν(i,j) and if one of them happens
to be ν(yl) (respectively −ν(yl)) for some l ∈ {1, . . . , n} then all the other vectors
are different from −ν(yl) (respectively ν(yl)). Recalling that by Proposition C.1, we
have

|v1 × v2| ≥ ϑ and | det(v1, v2, v3)| ≥ ϑ2

for any v1, v2, v3 ∈ {ν(i,j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i < j} ∪ {ν(yl) | 1 ≤ l ≤ n} with
v1 6= v2 6= v3, we deduce that ∇ζλ(x) can be written as a convex combination of at
most four vector that satisfy the previous property.

Arguing as in the proof of Proposition 5.1, we conclude that, since x ∈ Cκ and
κ < ϑ2/3, there exist four different functions

ζ1, ζ2, ζ3, ζ4 ∈ {ζ(i,j) | (i, j) ∈ Λ} ∪ {ζl,+ | yl ∈X ′} ∪ {ζl,− | yl ∈X ′},

where if ζa = ζ(i,j) for some (i, j) ∈ Λ and a ∈ {1, 2, 3, 4} then ζb 6= ζ(j,i) for any
b ∈ {1, 2, 3, 4} \ {a} and if ζa = ζl,+ (respectively ζa = ζl,−) for some l ∈ {1, . . . , n}
and a ∈ {1, 2, 3, 4} then ζb 6= ζl,− (respectively ζb 6= ζl,+) for any b ∈ {1, 2, 3, 4}\{a},
such that

∇ζλ(x) =
4∑
i=1

αiζ
′
i

for some αi ∈ (0, 1) with
∑4

i=1 αi = 1, and

| det(ζ ′1 − ζ ′2, ζ ′3 − ζ ′2, ζ ′4 − ζ ′2)| ≥ 3(ϑ2 − 3κ).
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Therefore the unique solution z ∈ R3 to the linear system of equations

ζ1(z) = ζ2(z) = ζ3(z) = ζ4(z)

lies in the ball B(x,Cλ/(ϑ2 − 3κ)). We deduce that Cκ can be covered by Bκ, a

collection of at most
(|Λ|+2|X ′|

4

)
≤ C((2k)8 + τ−8) balls of radius Cλ/(ϑ2 − 3κ).

Observing that

|D2ζλ(x)| ≤ C

λ2

for any x ∈ Ωλ, and letting

Tκ := ζλ(∪B∈BκB) ∪ ζλ(Pλ),

we conclude that

|Tκ| ≤ C
(
(2k)8 + τ−8

) λ

ϑ2 − 3κ

and that, for any t ∈ ζλ(Ωλ) \ Tκ, {x | ζλ(x) = t} is a complete submanifold of R3

whose second fundamental form is bounded by

C
supΩλ

|D2ζλ|
infΩλ\((∪B∈BκB)∪Pλ) |∇ζλ|

≤ C

λ2κ
.

Recalling the relation between λ and ϑ (see (C.5)), the proposition follows. �
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Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 3, 243–303. MR1340265 ↑3
[Gru93] P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bod-

ies. I, Forum Math. 5 (1993), no. 3, 281–297. MR1216036 ↑72

[Jer99] R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math.

Anal. 30 (1999), no. 4, 721–746. MR1684723 ↑3, 4, 15, 22

[JMS04] R. Jerrard, A. Montero, and P. Sternberg, Local minimizers of the Ginzburg-Landau

energy with magnetic field in three dimensions, Comm. Math. Phys. 249 (2004), no. 3,

549–577. MR2084007 ↑4, 6, 45

[JS02] R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc.

Var. Partial Differential Equations 14 (2002), no. 2, 151–191. MR1890398 ↑3, 6, 45

[Lan93] S. Lang, Real and functional analysis, Third, Graduate Texts in Mathematics, vol. 142,

Springer-Verlag, New York, 1993. MR1216137 ↑68

[LR01] F.-H. Lin and T. Rivière, A quantization property for static Ginzburg-Landau vortices,

Comm. Pure Appl. Math. 54 (2001), no. 2, 206–228. MR1794353 ↑4
[LR99] F. Lin and T. Rivière, Complex Ginzburg-Landau equations in high dimensions and

codimension two area minimizing currents, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 3,

237–311. MR1714735 ↑4
[Riv95] T. Rivière, Line vortices in the U(1)-Higgs model, ESAIM Contrôle Optim. Calc. Var.

1 (1995/96), 77–167. MR1394302 ↑3
[Rom19] C. Román, On the first critical field in the three dimensional Ginzburg-Landau model of

superconductivity, Accepted for publication in Comm. Math. Phys. (2019), available at

https://link.springer.com/article/10.1007/s00220-019-03306-w. ↑1, 7

[San01] E. Sandier, Ginzburg-Landau minimizers from Rn+1 to Rn and minimal connections,

Indiana Univ. Math. J. 50 (2001), no. 4, 1807–1844. MR1889083 ↑3, 9, 15, 16, 17, 31

[San98] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct.

Anal. 152 (1998), no. 2, 379–403. MR1607928 ↑3, 4

[Ser17] S. Serfaty, Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equa-

tions, J. Amer. Math. Soc. 30 (2017), no. 3, 713–768. MR3630086 ↑8, 47, 50

[Ser99] S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field.

I, Commun. Contemp. Math. 1 (1999), no. 2, 213–254. MR1696100 ↑6
[SS00a] E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below

the first critical magnetic field, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000),
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