THREE DIMENSIONAL VORTEX APPROXIMATION
CONSTRUCTION AND ¢-LEVEL ESTIMATES FOR THE
GINZBURG-LANDAU FUNCTIONAL

CARLOS ROMAN

ABSTRACT. We provide a quantitative three dimensional vortex approximation
construction for the Ginzburg-Landau functional. This construction gives an ap-
proximation of vortex lines coupled to a lower bound for the energy, optimal to
leading order, analogous to the 2D ones, and valid for the first time at the e-level.
These tools allow for a new approach to analyzing the behavior of global minimiz-
ers for the Ginzburg-Landau functional below and near the first critical field in
3D, followed in [Rom19]. In addition, they allow one to obtain an e-quantitative
product estimate for the study of Ginzburg-Landau dynamics.
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1. INTRODUCTION

1.1. The problem and a brief overview of the state of the art of the subject.
We are interested in studying the full three Ginzburg-Landau functional with applied
magnetic field

1 1 1
GL.(u,A) = = 24 (1 — |u?)? —/ H — H|?
() = 5 [ 19+ 0= P+ 5 [ 1 = Ho?,
which is a model for superconductors in a magnetic field.
Here

e () is a bounded domain of R3, that we assume to be Lipschitz and simply
connected.

SORBONNE UNIVERSITES, UPMC UNIv PARriS 06, CNRS, UMR 7598, LABORATOIRE
JACQUES-Louits LIONS, 4, PLACE JUSSIEU 75005, PARIS, FRANCE

MATHEMATISCHES INSTITUT, UNIVERSITAT LEIPZIG, AUGUSTUSPLATZ 10, 04109 LEIPZIG,
GERMANY

E-mail address: roman@math.uni-leipzig.de.

Date: August 17, 2018.

Final version. Accepted for publication in Archive for Rational Mechanics and Analysis.

1



2 CARLOS ROMAN

u: Q — C is called the order parameter. Its modulus squared (the den-
sity of Cooper pairs of superconducting electrons in the Bardeen-Cooper-
Schrieffer (BCS) quantum theory) indicates the local state of the supercon-
ductor: where |u|? ~ 1 the material is in the superconducting phase, where
|u|? ~ 0 in the normal phase.

o A:R3 — R3is the electromagnetic vector potential of the induced magnetic
field H = curl A.

e V, denotes the covariant gradient V — i A.

e H, :R®— R3is a given external (or applied) magnetic field.

e ¢ > ( is the inverse of the Ginzburg-Landau parameter usually denoted k,
a non-dimensional parameter depending only on the material. We will be
interested in the regime of small €, corresponding to extreme type-II super-
conductors.

An essential feature of type-II superconductors is the occurrence of vortices (similar
to those in fluid mechanics, but quantized) in the presence of an applied magnetic
field. Physically, they correspond to normal phase regions around which a supercon-
ducting loop of current circulates. Since u is complex-valued, it can have zeros with
a nonzero topological degree. Vortices are then topological defects of co-dimension
2 and are the crucial objects of interest in the analysis of the model.

Let us introduce the Ginzburg-Landau free energy
1 1
A) = 5/Qmu\? 4o (L— [uP)? + |curl AP

and the Ginzburg-Landau energy without magnetic field

/\Vu\er L jupe

In the 1990’s, mathematicians became interested in the Ginzburg-Landau model.
In the pioneering work [BBH94| in the 2D setting (i.e. when  is assumed to
be two dimensional), Bethuel, Brezis, and Hélein introduced systematic tools and
asymptotic estimates to study vortices in the model without magnetic field, which
is a complex-valued version of the Allen-Cahn model for phase transitions. A vortex
in 2D is an object centered at an isolated zero of u, around which the phase of u

has a nonzero winding number, called the degree of the vortex. A typical vortex
centered at a point xy behaves like u = pe’? with p = f (@), where f(0) =
and f tends to 1 as r — 400, i.e. its characteristic core size is ¢ and
1 0
% _dez
27T OB(x0,Re) or

is its degree (also defined as the topological-degree of the map u/|u| : 0B(x¢, Re) —
Sh.
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In [BBH94], the effect of the external magnetic field was replaced by a Dirichlet
boundary condition u = ¢ on 0f), where g is an S'-valued map of degree d > 0.
This boundary condition triggers the occurrence of vortices, allowing only for a fixed
number of them. They proved that minimizers u of E. have d vortices of degree +1
and that

E.(u) = wd|loge| + W(ay,...,aqy) ase — 0,
where W is the “renormalized energy”, a function depending only on the vortex-
centers a;, which repel one another according to a Coulomb interaction. This analysis
was then adapted to the study of the free energy by Bethuel and Riviere [BR95],
under a Dirichlet boundary condition on 0f2 that forces the presence of a fixed
number of vortices.

A new approach was necessary to treat the case of the full model when the number
of vortices gets unbounded as ¢ — 0. Tools capable of handling this difficulty were
developed after the works by Jerrard [Jer99] and Sandier [San98|. They introduced
independently the ball construction method, which allows one to obtain universal
lower bounds for two dimensional Ginzburg-Landau energies in terms of the topology
of the vortices. These lower bounds capture the known fact that vortices of degree
d cost at least an order 7|d| log% of energy. The second tool, which has been widely
used in the analysis of the Ginzburg-Landau model in any dimension after the work
by Jerrard and Soner [JS02], is the Jacobian or vorticity estimate. The vorticity is
defined, for any sufficiently regular configuration (u, A), as

p(u, A) = curl(iu, V qu) 4 curl A,

where (-,-) denotes the scalar product in C identified with R? i.e. (a,b) = 2t
This quantity is the U(1)-gauge invariant version of the Jacobian determinant of u
and is the analog of the vorticity of a fluid. The vorticity estimate allows one to
relate the vorticity p(u, A) with Dirac masses supported on co-dimension 2 objects,
which in 2D are points naturally derived from the ball construction. In a series of
works summarized in the book [SS07], Sandier and Serfaty analyzed the full two
dimensional model and characterized the behavior of global minimizers of GL. in

different regimes of the applied field (see also [SS00a, SS00b, SS00c, SS03]).

Riviere [Riv95], was the first to study the asymptotic behavior of minimizers of
the free energy, under a Dirichlet boundary condition, as € — 0 in the 3D setting.
Roughly speaking, vortices in 3D are small tubes of radius O(e) around the one
dimensional zero-set of u. In the limit ¢ — 0 vortices become curves L with an
integer multiplicity d, whose cost is at least an order wd|L||loge| of energy, where
|L| denotes the length of L. In [Riv95], using an n-ellipticity result, Riviere identified
the limiting one dimensional singular set of minimizers of F, with a mass minimizing
current, which corresponds to a minimal connection. This concept was introduced in
the work by Brezis, Coron, and Lieb [BCL86]. A new approach by Sandier in [San01],
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combined the use of this object with a suitable slicing procedure to obtain the same
result of Riviere in the case without magnetic field, and a generalization to higher
dimension. We refer the interested reader to [LR99, BBO01, LR01, BBM04, ABOO05,
SS17] for further results in dimensions 3 and higher, when the applied magnetic field
is zero.

Jerrard, Montero, and Sternberg [JMS04] established the existence of locally min-
imizing vortex solutions to the full three dimensional Ginzburg-Landau energy. Re-
cently, Baldo, Jerrard, Orlandi, and Soner [BJOS12,BJOS13], via a I'-convergence
argument, described the asymptotic behavior of the full model as ¢ — 0. We point
out that conversely to the 2D situation, which is well understood, many questions
remain open in 3D, in particular obtaining all the analogues of the 2D results con-
tained in [SSO07]. This is due to the more complicated geometry of the vortices in
3D, which have to be understood in the framework of currents and using geometric
measure theory.

1.2. e-level estimates for the Ginzburg-Landau functional. The key in Ginzburg-
Landau analysis has proven to be a vortex approximation construction providing
both approximation of the vorticity and lower bound. In 2D, this corresponds to
the ball construction [San98, Jer99,SS07], which is a purely two dimensional method
that provides e-quantitative estimates. In 3D (and higher), based on the Federer-
Fleming polyhedral deformation theorem, a not quantitative construction was pro-
vided in [ABOO05] and later revisited in [BJOS12].

In this paper we present a new 3D vortex approximation construction, which
provides an approximation of vortex filaments coupled to a lower bound for the
energy, optimal to leading order, analogous to the 2D ones, and valid for the first
time at the e-level. Roughly speaking, our approximation is made as follows: for
configurations (u., A.) whose free energy is bounded above by a suitable function of
e, we consider a grid of side-length § = d(¢). If appropriately positioned, the grid
can be taken to satisfy that |u.| > 5/8 on every edge of a cube. Then a 2D vorticity
estimate implies that the restriction of the vorticity p(ue, Ac) to the boundary of
every cube is well approximated by a linear combination of Dirac masses. Using
minimal connections, we connect the points of support of these measures. Our choice
of grid ensures a good compatibility between the objects constructed in cubes that
share a face. Finally, by considering the distance

doq(x,y) = min{|z — y|, d(x,0Q) + d(y, 00N)},

we construct our approximation close to 0€), using minimal connections defined
in terms of this distance. This process yields a closed polyhedral 1-dimensional
current v, or, more precisely, a sum in the sense of currents of Lipschitz curves,
that approximates well the vorticity p(ue, A.) in a suitable norm.

We may now state our main results.
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Theorem 1.1 (e-level estimates for Ginzburg-Landau in 3D). Assume that OS2 is
of class C*. For any m,n, M > 0 there exist C,gy > 0 depending only on m,n, M,
and 99, such that, for any e < ey, if (u., Ac) € HY(Q,C) x H'(Q,R?) is a configu-
ration such that F.(u., A.) < M|loge|™ then there exists a polyhedral 1-dimensional
current v, such that

(1) ve/m is integer multiplicity,

(2) Ov. = 0 relative to Q,

(3) supp(r:) C S,. C Q with |S,.| < C|loge|™, where g(m,n) := 3(m + n),

(4)

1
(1.1) / Vauc|® + == (1 = |uc?)® 4 | curl A[?
Su 2e

¢
|log e’

1 1
> |ve|(2) (10g - — Cloglog g)

(5) and for any v € (0, 1] there exists a constant C., depending only on v and 052,
such that
Fo(us, Ag) +1

(1.2) e, Ac) = vellogro = =0T

Notation and definitions of the objects and spaces involved in this result can be
found in the preliminaries (see Section 2).

Remark 1.1. Alternatively, the right-hand sides of the lower bound and the vorticity
estimate can be expressed in terms of the free energy F(u., A.) of the configuration
(ue, Ac) and a length 6 = (), which measures how “close” p.(u., A:) is to v., and
which is a parameter of the construction (the side-length of the aforementioned grid).
This will be done in the rest of the paper.

We also remark that the right-hand side of (1.2) can be made small if n >

m(%—l).

The technical assumption that 9 is of class C? allows us to find a lower bound
for the free energy close to the boundary of the domain. If OS2 is only assumed to
be Lipschitz, one has the following result.

Theorem 1.2. For any m,n, M > 0 there exist C,eq > 0 depending only on m,n,
and M, such that, for any € < g, if (us, A.) € H'(Q,C) x H'(Q,R?) is a configu-
ration such that F.(u., A.) < M|loge|™ then, letting q := 3(m +n) and defining

Q. ={xeQ|dxz00)>2loge| "},
there exists a polyhedral 1-dimensional current v, such that

(1) ve/m is integer multiplicity,
(2) Ov. = 0 relative to Q,
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(3) supp(r.) C S,. C Q with |S,.] < Clloge|™9,
(4)

1 1 1
/ |VA€u5|2+—(1—|u5|2)2—|—| curl A€|2 > || () <log— — C'loglog —)— ¢
Su 2¢? £ €

|log e[’

(5) and for any v € (0, 1] there exists a constant C., depending only on v and 052,
such that
F.(us, Ac) + 1

It 40 = el < O

As a direct consequence of Theorem 1.1, we recover and improve within our work
setting, a well known result concerning the convergence as ¢ — 0 of the vorticity of
families of configurations whose free energy is bounded above by a constant times
a power of |loge|. Results of the same kind can be found in [JS02, JMS04, SS04,
ABO05,BJOS12].

Corollary 1.1. Assume that 0Q is of class C*. Let {(u., A.)}. be a family of
configurations of H'(Q,C) x H' (2, R3) such that F.(u., A.) < M|loge|™ for some
m > 1 and M > 0. Then, up to extraction,

p(ue, Ac)

: 0, *
flogeprr MO

for any v € (0,1], where u is a 1-dimensional current such that p/m is integer
multiplicity and Ou = 0 relative to Q. If m = 1 then p is in addition rectifiable.
Moreover,

lim inf Fe(ue, Ae)

= > Q).
mint e > [al(0)

1.3. Application to the full Ginzburg-Landau functional. The behavior of
global minimizers for GL. is determined by the strength of the external magnetic
field H.c. This model is known to exhibit several phase transitions, which occur
for certain critical values of the intensity of H.,. We are interested in the so-called
first critical field, usually denoted by H.,. Physically, it is characterized as follows.
Below H., the superconductor is everywhere in its superconducting phase |u| &~ 1
and the external magnetic field is forced out by the material. This phenomenon is
known as the Meissner effect. At H.,, which is of the order of |loge| as e — 0,
the first vortice(s) appear and the external magnetic field penetrates the material
through the vortice(s).

In the works [Ser99, SS00a, SS03, SS07], Sandier and Serfaty derived with high
precision the value of the first critical field and rigorously described the behavior
of global minimizers of GL. below and near H., in 2D. In the 3D setting, Alama,
Bronsard, and Montero [ABMO06] identified a candidate expression for H., in the
case of the ball. Then, Baldo, Jerrard, Orlandi, and Soner [BJOS13]|, characterized
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to leading order the first critical field in 3D for a general bounded domain. In
[Rom19], using crucially the e-level estimates in Theorem 1.1, we computed H,,
with higher precision and characterized the behavior of global minimizers for the
full three dimensional Ginzburg-Landau energy below and near this value.

Since magnetic monopoles do not exist in Maxwell’s electromagnetism theory, we
may assume that He, € L (R3 R3) is divergence-free. Then, there exists a vector

loc
potential Ao € H.(R? R?) such that

curl Aoy = Hoy and  div Ae = 0 in R3.
Let us introduce the space
Hep i={A € H. (R* R?) | curl A € L*(R* R?)}.
The functional GL.(u, A) is well defined for any pair (u, A) € H'(Q, C) X [Aex+ Heun)-

The following result is a direct consequence of Theorem 1.1.

Corollary 1.2. Theorem 1.1 holds true if the hypothesis that (u., A.) € H(Q,C) x
HY(Q,R3) is a configuration such that F(u., A.) < M|loge|™ is replaced with the
assumption that (u., A.) € HY(Q,C) X [Aex + Heun] is a configuration such that
GL:(ue, Ac) < M|loge|™.

Remark 1.2. In particular, this result holds true if (u., A.) is a minimizing config-
uration for GL. in H(Q, C) X [Aex + Heun] and ||Hex||%2(R3’R3) < M|loge|™. Indeed,
this follows by observing that

GLe(ue, Ac) = Hl(Q,(C)Xir[lAfeerchrl] Cleu, 4) < GLe(l, Au) = /Q Aexl” < CllHexll72 o )

for some universal constant C'.

1.4. A quantitative product estimate for the study of Ginzburg-Landau
dynamics. In this section, we consider the special case 2 = (0,7") X w, with 7" > 0
and w C R?, i.e. we deal with configurations (u., A.) which depend both on space
and time. We use coordinates (t,z1, %) in three-space and denote V = (0, 0%, ),
VL = (=04,,0,,). We consider gauges of the form

A= (..B.),
where @, : (0,7) x w — R and B, : (0,T) x w — R?. By using the notation
X+t =(-Xy, X)), curlX =0, X —0,,X1
for vector fields X in the plane, we observe that
curl A, = (curl B, 0B+ — Vid,).
As above, the vorticity in three-space is defined by
plue, A) = curl((Qpue — iPoue, iue) + Doy (Vue — iBoug, iu.) + Be).
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This can be written as
:u(u& AE) = (Jm Vva)y
where
J. = curl(Vug, iu.) + curl(1 — |u.|)*B.
is the space-only vorticity and
Ve 1= 2(i0ue, Vi) + 0,(1 — Jue ) BS — V(1 — |uc]?) .
is the velocity. Since Ou(u., Ac) relative to 2, we have the relation
8,5Ja -+ le‘/E = 0,
which means that the vorticity J. is transported by V., hence the name velocity.
We let M. be a quantity such that

1
oge 0.

(1.3) Vg >0, }:l_{% M.e? =0, ll_{r(l) RV =0, and ll_{% lolfg]\ja =
For example M, = eVI'°8¢l will do. Under the hypothesis of Theorem 1.2, our
construction provides an approximation for the vorticity in three-space, which in
particular yields an approximation for the velocity V. and for the space-only vor-
ticity J.. This combined with ideas from [SS04, Ser17], yields a quantitative three
dimensional product estimate, which allows one to control the velocity.

Theorem 1.3. Assume w to be Lipschitz and let M. be as above. Consider a
function f € Cy*([0,T] x @) and a spatial vector field X € Cy'([0,T] x @). For
any m,n, M,A > 0 with n > %(2 — m) there exist a universal constant C > 0
and €9 > 0 depending only on m,n, M, A\, f and X, such that, for any ¢ < &g,
if (ue, As) = (ue, (®.,B.)) € HY(Q,C) x HY(Q,R3) is a configuration such that
F.(us, Ac) < M|loge|™ then
2
/ %Wtue — iu. D, |* + / AX - (Vu, — iu.B.)?
(0,T)xw

(0,T)xw

> (|log | — C'log M.)

/ fl/g VAN (—del‘l + dexg)
(0,7)xw

- C max(|v: A dxql, |ve A dxs]) + O <| 1Og€|—%(m+3n)+1> 7
(0,7)xw

where v, is the polyhedral 1-dimensional current v. associated to (ue, Ac) by Theorem
1.2.

Remark 1.3. By choosing
. 1/2
A= ( f(O,T)Xw ’f|2‘atus - Zueq)5|2 > /

Joryxe 1X - (Ve — iuBe)|?
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one obtains a left-hand side in the form of a product (plus error terms), hence the
name product estimate. It is worth mentioning that the dependence of € in terms of
A, f, and X can be found in the proof (see Section 9).

1.5. A word about the proof of the main results. The subtle point of the
proof is to obtain a lower bound for the free energy at the e-level. Here is where
minimal connections play a role. The idea of obtaining lower bounds for Ginzburg-
Landau energies via the use of minimal connections was first introduced in [San01],
in the case of the energy without magnetic field E.(u). When trying to apply this
kind of method to obtain lower bounds for the full functional GL.(u, A), the main
obstacle is that as soon as the external magnetic field is of the order of the first
critical field, the number of vortices is a priori unbounded as € — 0. The main
challenge in getting a lower bound that works at the e-level is thus to keep track
of the dependence of all the estimates on € and d(¢), taking into account that the
number of vortex filaments may be unbounded.

Our method goes as follows: the choice of grid allows us to show that the re-
striction of the vorticity to the boundary of a cube % can be well approximated

by k k
o (Z Op =Y 5%) :
=1 =1

where the points p;’s are the (non-necessarily distinct) positive singularities and the
points n;’s are the (non-necessarily distinct) negative singularities. We remark that
the number of points and their locations depend on .

By [BCL86|, we know that there exists a 1-Lipschitz function ¢ : R? — R? such
that

Zam - Z«m) = L(),

where L(<7) is the length of the minimal connection associated to the configuration
of points & = {p1,...,pk, N1, ..,nk}. Since |V(| < 1, the co-area formula gives

[etw)= [ewvaz [ [ u e

where e.(u.) = 3|Vu > + 5 (1 — [u[*)? and 5, = {{ =t} N E.

42
At this point, a vortex ball construction on a surface is necessary. Roughly speak-

ing, if ¥, is nice enough and |u.| > 1/2 on 0%, we expect

1
/ ee(ue)dH? > ndeg(u./|u.|, 0%;) <log o O(log | log 5|)> .
P
It turns out that, for most t’s, we have

deg(ue/|uc|, 0%;) = #{i | C(pi) >t} — {0 [ ((ni) > ¢}
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By noting that

k

A Cm) > i | Clm) > e = 3 Clp)=3 €)= L) ~ 510 |6),

=1

we are led to
1 1
/ ec(us) > §|v5|(‘5) <logg — O(log ]| logs|)) + small error.
«

Unfortunately, we cannot really use the function  in the previous argument, because
its regularity is not sufficient to apply the ball construction on most of its level
sets. To bypass this issue, we construct a smooth approximation of this function.
The difficulties appear when trying to control the errors involved in the previously
described method, because a quantitative bound of the second fundamental form of
most of the level sets of our smooth approximation of the function ( is needed.

In a similar but more involved way, by assuming that 92 is of class C?, we can
obtain a lower bound close to the boundary of the domain.

It is worth mentioning that by density arguments we can assume without loss of
generality that u and A are of class C'! in some proofs of this paper.

Outline of the paper. The paper is organized as follows.

In Section 2 we introduce some basic objects and spaces that are used throughout
the paper, we recall some facts from the theory of currents and differential forms,
and we describe the choice of grid.

In Section 3 we provide the ball construction method on a surface, which is one
of the key tools used to obtain the lower bound for the free energy.

In Section 4 we show a 2D vorticity estimate. The main difference with classical
results of the same kind is the space in which we prove the estimate.

In Section 5 we start by reviewing the concept of minimal connection. Then, we
introduce the function ¢ and the function ¢ for dyq, and state three technical propo-
sitions concerning quantitative smooth approximations of these functions. Finally,
we present our 3D vortex approximation construction.

Section 6 is devoted to the proof of a lower bound for the energy without magnetic
field in the union of cubes of the grid, while in Section 7 we provide a similar estimate
near the boundary of the domain. In these proofs we crucially use the results of
Section 3 and Section 5.

In Section 8 we present the proofs of Theorem 1.1 and Theorem 1.2, which use
the lower bounds obtained in Section 6 and Section 7, as well as the 2D vorticity
estimate of Section 4.

In Section 9 we prove the quantitative product estimate for the study of Ginzburg-
Landau dynamics.
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In Appendix A we construct a quantitative smooth approximation of the function
(. In Appendix B and Appendix C, we present two different methods to do the
same for the function ¢ for dsq. These are the most technical parts of the paper.

2. PRELIMINARIES

It is useful to introduce certain concepts and notation from the theory of currents
and differential forms. We recall that in Euclidean spaces vector fields can be iden-
tified with 1-forms. Indeed, the vector field F' = (F}, Fy, F3) can be identified with
the 1-form Fidxri + Fydre + Fzdrs. We use the same notation for both the vector
field and the 1-form.

It is also convenient to recall that a vector field F' satisfying the boundary con-
dition F' x v = 0 on 0f2, where hereafter v denotes the outer unit normal to 0f2, is
equivalent to a 1-form F' such that Fr = 0 on 0€). Here Fr denotes the tangential
component of F' on 0f).

We define the superconducting current of a pair (u, A) € H'(Q,C) x H'(2,R?)
as the 1-form

3
Jjlu, A) = (iu,dau) = Z(zu, Ok — 1 Agu)dxy.
k=1

This is related to the vorticity p(u, A) of a configuration (u, A) through
p(u, A) = dj(u, A) + dA.

Thus p(u, A) is an exact 2-form in 2 acting on couples of vector fields (X,Y) €
R? x R? with the standard rule that dx; A dz;(X,Y) = X,Y; — X,Y;. It can also be
seen as a l-dimensional current, which is defined through its action on 1-forms by
the relation
(. )(0) = [ () o
Q

We recall that the boundary of a 1-current 7' relative to a set ©, is the O-current
0T defined by

T (¢) = T(do)
for all smooth compactly supported 0-form ¢ defined in ©. In particular, an inte-
gration by parts shows that the 1-dimensional current p(u, A) has zero boundary
relative to Q. We denote by |T'|(©) the mass of a 1-current 7" in ©.

For o € (0, 1] we let C%*(£2) denote the space of 1-forms ¢ such that ||¢||coe(q) <
0o. Cg*(€) denotes the space of 1-forms ¢ € C%*(Q) such that ¢ = 0 on 99, while
C2*(92) denotes the space of 1-forms ¢ € C%*(Q) such that ¢p = 0 on Q. The
symbol * is used to denote the dual spaces.

We next recall the definition of topological degree.
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Definition 2.1. Let X be a complete oriented surface in R3. If © C ¥ is a smooth
domain, and the map u : X — C does not vanish on 00, we can define the degree
deg(u/|u|,00) of u restricted to 9O to be the winding number of the map u/|ul :
00 — St

We observe that, because X is assumed to be oriented, 0O carries a natural
orientation. In the case that 0O is not smooth, the topological degree can still be
defined by approximation.

Hereafter H? denotes the d-dimensional Hausdorff measure, for d € N. When
meaningful, we sometimes use the notation

F.(u,A,0©) ::/ee(u,A)dH2, E.(u,0) ::/ee(u)dH2,
o o

with e, (u, 4) := 3| Vau|? + 5 (1= [u*)?+ | curl A, e-(u) == 5| Vul> + 5 (1 — [u]?)%

4e2 2 1e2

2.1. Choice of grid. Let us fix an orthonormal basis (e, €3, e3) of R® and consider
a grid & = &(a,d) given by the collection of closed cubes 4; C R?® of side-length
d = 0(e) (conditions on this parameter are given in the lemma below). In the grid
we use a system of coordinates with origin in a € €2 and orthonormal directions
(e1,e9,e3). From now on we denote by J; (respectively Ry) the union of all edges
(respectively faces) of the cubes of the grid. We have the following lemma.

Lemma 2.1 (Choice of grid). For anyy € (—1, 1) there exist constants co(7y), c1(y) >
0, 50(Q) € (0,1) such that, for any e,6 > 0 satisfying

11— 1-n
g2 <¢y and cer <9 <0,

if (ue, A.) € HY(Q,C) x HY(Q,R3) is a configuration such that F.(u., A.) < &7
then there ezists b. € Q such that the grid &(b.,d) satisfies

(2.1a) lusl > 5/8 on Ry(B(b.,d)) NQ,

(2.1b) / ez, A)dH' < C62F.(ue, A,

R1(&(be,0))NQL

(2.1¢) / ez, AL)dH? < 6 'F.(ue, A,

R (&(be,0))NQL

where C is a universal constant.
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Proof. First, let us observe that, by the Cauchy-Schwarz inequality and the co-area
formula, we have

/ IVl + 51 a2

Z/Q|V|ual| €—|ua|2)
- /t—o </{|u—t} - ;t ) )

Define T := {t € [5/8,3/4] | Area({|u.| = t}) < &} for @ := 52, From the previous
estimate we deduce that

IT|>1/8 = Ce' " “F.(u., A.),

where hereafter C' > 0 denotes a universal constant that may change from line to
line. It is easy to check that there exists a constant cg(y) > 0 such that |T'| > 0 for
any € > 0 satisfying e < Co-

Fix a point a € Q and choose dy = dy(Q2) € (0,1) such that {a + [0,5]*} C Q for
any 0 < § < dg. Fix tg € T" and define

By :={be€{a+1[0,0} | {|uc| = to} NR1(&(b,0)) # 0}.
Let us show that |B;| < Cde®. We define, for any b € {a + [0, 0]},
I =b+Rx (02)% Ty=0b+(6Z) xR x (6Z), and T% = b+ (6Z)>

In addition, we set

Wl(x,y, Z) = (ya Z)v 7r2(:v,y, Z) = (.T,Z), and 7T3(~T,y>z) - ($7y)
Let us observe that, for any b; € {a; + [0, 0]}, we have

/(b2 bs)€{(az,03)+(0,8]2} X{(eao) | To0(fucl=to} 20} < Area(m({ue] =to})).

Therefore,

X N < dArea(m ({[uc| = to})).
/ble{a1+[o,5}}/(b2,b3)e{(a2,a3)+[o,5]2} {(b2,b3) | Ty {Juc|=to}0}

Analogously, we have

X bl | < dArea(my({|uc| = to}))
/bQE{a2+[O,5]} /b17b3)€{(a17a3)+[076]2} {(bl,bS) ‘ Fgﬂﬂ s| tO};’é@} 5

and

X bl . | < dArea(ms({|us| = to}))-
/b36{0«3+[0,5}} /(vb1,b2)€{(a17a2)+[0,5]2} {(bl,bQ) | Fgﬂ{‘ e| tO}?’é@} 5
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We deduce that
3
|B;| < 52Area(m({|ug| =to})) < CoArea({|u| =to}) < Coe”.
i=1
Let us now observe that, for any b € {a + [0,4]*} \ Br,
either |uc| >ty or |uc| <ty on MR (B(b,0))N Q.

We let
By = {b € {a+ 0,0\ Br | {Jue| < to} NR1(B(b,5) # @}

and observe that, for every b € By, we have (1 —|u.|?) > (1 —1¢3). This implies that

( (Ui ‘</ / (e, A)AHIAL(D) < Fulue, A2,

beBrr Ry (6(b,6))N

and thus |By;| < Ce?F.(u., A.).
Now, we define Bgooq := {a + [0,0]*} \ (B; U Byy). Observe that

| Bgood| > 6° — C(0e* +&277)

and that there exists a constant ¢; > 0 such that |Bgeoa| > /2 for any £,6 > 0
satisfying c;e2 < 6. Moreover, for any b € Bgood, we have

luc| > to on R(B(b,05)) N Q.
Next, using a mean value argument we choose b = b, € Bg,0q in such a way that
ee(te, A)dH" < C6" 3 F.(u., A.) forn=1,2.
Ry, (& (be,8))NQ

First, by [ABOO5, Lemma 8.4] there exists b. € Bgooa such that, for n =1,2,

/ (e, Ag)dH"™ < / ee(ue, Ac)dH"dL(D).
|Bgood|

R (6(be,6))NQ Bgood Rn (6(b,8))NQ

Second, arguing as in the proof of [ABOO05, Lemma 3.11], we have

1 —-n n

- / 5 / . (e, ANAHAL(D) = CFa(ua, AL) forn = 1,2.
{a+[0,6]3} R (6(b,6))NQ

Then, we deduce that

3

/ ee(te, A)dH" < O——06"3F.(u.,A.) forn=1,2.

R (&(be,0))N2

| good|

Recalling that |Bgooa| < 6°/2, the lemma follows. O
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From now on we drop the cubes of the grid &(b.,d), given by Lemma 2.1, whose
intersection with R3 \  is non-empty. We also define

(2.2) O : =0\ Uges? and 06 :=0(Uges@) .

Observe that, in particular, 00 = 9® U 0f).

We remark that &(b.,d) carries a natural orientation. The boundary of every
cube of the grid will be oriented accordingly to this orientation. Each time we refer
to a face w of a cube %, it will be considered to be oriented with the same orientation
of 0%. If we refer to a face w C 9®, then the orientation used is the same of 0®.

3. THE BALL CONSTRUCTION METHOD ON A SURFACE

In this section we use the method of Jerrard introduced in [Jer99] in order to
construct balls containing all the zeros of u on a surface. This allows us to obtain
a lower bound for the energy without magnetic field. The construction given here
follows the one made by Sandier in [San01] that corresponds to an adaptation of
the method of Jerrard. More precisely, our result extends [San01, Proposition 3.5,
which deals with the case of a bounded number of vortices, to the situation in which
the number of vortices is (a priori) unbounded as ¢ — 0.

Proposition 3.1. Let & be a complete oriented surface in R® whose second fun-
damental form is bounded by 1. Let ¥ be a bounded open subset of . For any
m, M > 0 there exists o(m, M) > 0 such that, for any € < &, if u. € H' (X, C)
satisfies

(3.1) E.(us,¥) < M|loge|™
and

1
(3.2) lu(z)] > 3 if 0(z,0%) < 1,

where 0(+, ) denotes the distance function in S, then, letting d be the winding number
of u./|uc| : 05 — S and M. = M|loge|™, we have

1
B, %) > ld] (1og— - 1ogMa) |
£
To prove Proposition 3.1 we follow almost readily the proofs of [Jer99] and [San01].

3.1. Main steps. Let us define the essential null set Sg(u.) of u. to be the union of
those connected components U; of {z | |uc(x)| < 1/2} such that deg(u./|u.|,OU;) #
0.

In the rest of this section each time we refer to a ball B of radius » we mean a
geodesic ball of radius r in X.
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First, we include Sg(u.) in the union of well-chosen disjoint “small” balls B; of
radii r; > € such that
T
@7
where the constant C' does not depend on the second fundamental form of ¥ when
it is assumed to be bounded by 1. This is possible according to the following lemma.

Ea(u57 Bz) Z

Lemma 3.1. Under the hypotheses of Proposition 3.1, there exist C,rq > 0 such
that, for any € > 0, there exist disjoint balls By, ..., By of radii r; such that
(1) r; >¢ forallie {1,... k}.
(2) Sg(u) C U;B; and B; N Sg(u) # 0 for alli e {1,...,k}.
(3) Forallie{1,...,k},
min{r;, 7o, 1}
Ce ‘
Then the proof involves dilating the balls B; into balls B; by combining them with

annuli. A lower bound for E.(u., B}) is obtained by combining the lower bound for
E.(u., B;) and a lower bound for E.(u., B, \ B;).

E.(u., BiNY) >

Lemma 3.2. Under the hypotheses of Proposition 3.1, there exist C,eq,19 > 0 such
that, for any 0<e<s<r <, if By, Bs C X are two concentric balls and if
Se(u.) N (B, \ Bs) =0 then, letting d := deg(u./|u.|,dB,),

w210 (o (1) (3))

where A. : Ry — Ry is a function that satisfies the following properties:
(1) Ac(t)/t is decreasing.

(2) supser, Ac(t)/t <1/(Ce).
(3) If0<e<egg and e <t <ry then

A(t) — ﬂlogé' <C.

By taking into consideration the following adaptation of [San01, Lemma 3.12], the
proofs of the previous two lemmas are straightforward modifications of the proofs
of [San01, Lemma 3.8] and of [San01, Lemma 3.9].

Lemma 3.3. Let Si(x) denote the geodesic circle in S of radius t centered at xz € X.
Under the hypotheses of Proposition 3.1, there exist C,eg,rg > 0 such that, for any
r € ¥ and for any e,t > 0 satisfying € < g and € < t < ro, if |us| < 1 on Si(z)
then

+ —m)C
Butue o) z o (1= o) B
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where m := inf |u.(y)| and
YyES

d:= { deg(uz/|uz|, Si(z)) m # 0,
0 m = 0.

Proof. By observing that the constants 7,7, and C involved in (B.8), (B.9), and
(B.12) in the proof of [San0l, Lemma 3.12] can be chosen independently of the
second fundamental form of 3 when it is assumed to be bounded by 1, then the
proof is verbatim the same as that of [San01, Lemma 3.2]. O

Lemma 3.1 and Lemma 3.2 allow one to prove the following result, whose proof
is a straightforward modification of the proof of [San01, Proposition 3.10].

Proposition 3.2. For any € > 0, let {B;}; be the family of balls of radii r; given
by Lemma 3.1. Let

deg(u./|u|,0B;) if B; C X.,
di = .
0 otherwise,

and

T
to:= min — (with ¢ := +o0 if d; = 0 for every 7).
07 Ty Ty (iR o v )

Then, for anyt > to, there exists a family of disjoint geodesic balls By(t), ..., By (t)
of radii r;(t) in ¥ such that

(1) Sg(u) C U;B;(t) and Sp(u) N Bi(t) #0 for alli € {1,...,k(t)}.

(2) Foralli€ {1,...,k(t)}, if Bi(t) C X then r;i(t) > t|d;(t)|, where

dz(t) = deg(us/|ua|7 aBz<t))
(3) Forallie{l,...,k(t)},
A(t
E.(ue, Bi(t) N'YX) > min{r;(t), o, 1}#

Proof of Proposition 3.1. We assume that d # 0, otherwise the result is trivial.
Apply Lemma 3.1, call the resulting balls By, ..., By, and call rq, ..., rg their radii.
From Lemma 3.1 and (3.1), we have

min{r;, 79, 1} < CeE.(u., BiNY) < CeM. < Ce|loge|™,

where throughout the proof C' = C'(M) > 0 denotes a constant that may change
from line to line. We deduce that there exists g9(m, M) > 0 such that, for any
i€ {l,...,k} and for any ¢ < e,

1
(3.3) r; = min{r;, 79,1} < CeM, and r; < 5
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Since 9(Sg(ue), 0¥) < 1, which follows from (3.2), and B;NSg(u.) # 0, we conclude
that B; ¢ ¥. Thus

k
(3.4) Z deg(u./|uc|, B;) = d # 0.

As in Proposition 3.2, let
T

O i oy Jdi]
From (3.3) and (3.4), we get that ¢y < CeM,. Fix a € (0,1) with a < m. By reduc-
ing the constant &g, we deduce that tg < M !|loge|* for any € < . Therefore, we
may apply Proposition 3.2 with ¢ = M_!|loge|®. This yields balls By (t), ..., By (t)
with radii r;(¢) and degrees d;(t) such that

t

min{r;(t),ro, 1} < E-(ue, Bi(t) N X)

A-(t)

From Lemma 3.2, we have

M| logel|
Clloge]

Once again, since 3(Sg(ue), 03) < 1 (recall (3.2)) and B;(t)NSp(u) # 0, by possibly

further reducing the constant &g, we deduce that B;(t) C X for any i € {1,...,k(¢)}

and for any ¢ < gp. Hence d = Zfitl) d;(t). Then, from Proposition 3.2, r;(t) >
t|d;(t)| and therefore

ri(t) = min{r;(t),ro, 1} < M, < C| log6|a_1.

k(t)
Bx(ue, %) 2 Y ldi(0)|A(0).

Since fol) |d;(t)| > |d| and t < rg if € is small enough (recall that v < m), Lemma
3.2 implies that, for any € < gy, for a possibly smaller g,

t 1
E.(u,X) > w|d| (log— — C’) > 7|d| (log— — log ME) :
€ €
The proposition is proved. O

Corollary 3.1. Let ¥ be a complete oriented surface in R® whose second fundamen-
tal form is bounded by Q. = Q|logel?, where q,Q > 0 are given numbers. Let 3 be
a bounded open subset of &. For any m, M > 0 there exists eo(m, q, M, Q) > 0 such
that, for any € < g, if u. € HY(X, C) satisfies

E.(us,X) < M|loge|™
and

(3.5) lu(z)| > if 9(x,0%) < Q-

| —
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where 0(+, ) denotes the distance function in S, then, letting d be the winding number
of uc/|ue| : 0% — S* and M. = M|loge|™ we have

e, ) 2 ] (log - 10g M0 )
Proof. Let us consider the transformation
(L) wrvesos
We let . := Q.. Observe that, by a change of variables, we have
Ec(us, X)) = Ex(te, ),

where & := Q.. It is easy to check that the second fundamental form of %, is
bounded by 1. Then a direct application of Proposition 3.1 shows that

1 1
Ea(usa E) = Eg(ﬂg, Ea) > 7T|d| (1Og g - log Me) = 7T|d| (1Og g - log Mst)

for any 0 < & < g1 = g9Q-", where g is the constant appearing in the proposition.
OJ

4. A 2D VORTICITY ESTIMATE

Let w be a two dimensional domain. For a given function v : w — C and a given
vector field A : w — R? we define

ju A) = (i, Vau),  plu, A) = dj(u, A) + dA.
We also let

P(wAw) = [

w

es(u, A), Fa(u,A,&u):/ ea(u,A)d'Hl,
Ow

where .
ec(u, A) = |V qul® + 2—62(1 — |ul*)? + | curl A|”.
We have the following 2D vorticity estimate.

Theorem 4.1. Let w C R? be a bounded domain with Lipschitz boundary. Let
u:w — Cand A : w — R? be C1 (W) and such that |u| > 5/8 on Ow. Let
{U,}jes be the collection of connected components of {|1—|u(x)|| > 1/2} and {S; }ier
denote the collection of connected components of {|u(x)| < 1/2} whose degree d; =
deg(u/|ul,05;) # 0. Then, letting r = .., diam(U;) and assuming €, < 1, we
have

(4.1) ||pe(u, A) = 27> " did,

icl

< Cmax(e,r)(1+ F.(u, A,w)+ F.(u, A, 0w)),

CO,l(w)*
where a; is the centroid of S; and C' is a universal constant.
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Proof. As in [SS07, Chapter 6], we set x : R, — R, to be defined by

X()—Qx if z € [0,1]
X(z) = if v €[5, 5]
<§_1+2( 3) ifzels2]

(
We then set 4 : w — C by
x(ul)

[l

u(zx) =

and let

J = (i, dsi), f :=dj+ dA.
Step 1. Let us prove that
| (u, A) = fil| corwy < Ce(Fe(u, A,w) + Fo(u, A, 0w)).
In fact, by integration by parts, for any function ¢ € C%!(w), we have
[ty =) < | [ 70+ Gwa)- 3| +| [ w50,

where ¢ is the outer unit normal to dw and xt = (—xy,7;) for any vector z =
(x1,22). Arguing as in [SS07, Lemma 6.2], we get

L : luf? — |2
/w (VO - (ilu, 4) = J)| < 1V¢ N e / =19

< 3|VC]lzm o) / 11— Jull|V au
< OV e Filu, A, ).

Since |u| > 5/8 on Ow, a simple computation shows that
|j(u, A) — ﬂ <2(1 —|ul’) |[Vau| on dw.
By the Cauchy-Schwarz inequality, we find
| €)= 3) 0 < 2clemey [ (1= fuf') |Vaul art
Ow Ow
< CHCHCO,I(w)EFg(u, A, 8&))

Thus,
1w, A) = Allcony < Ce(Fe(u, A,w) + Fr(u, A, Ow))

for some universal constant C.

Step 2. By Step 1, the proof reduces to showing that

< Cmax(r,e)(1+ F.(u, A,w) + F.(u, A, 0w)).
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Observe that j+A = (it, dit) and fi = 0 whenever |4 = 1,i.e. when |[1—|u|| < 1/2.

In particular
/ i=0.
{l1—ul|<1/2}

On the other hand, for any j € J, Stokes’ theorem yields

/ = / (ta, Va) - 7 = 2md;,
U; U,

where d; = deg(u/|u|,0U;) and 7 denotes the unit tangent vector to oU;. By
definition of the collection {S;};c;, we have

> [ a=¥ [ =X 2w
jeg VUi icl /S i€l
Let ¢ € C%(w). From the previous computations, we deduce that
[a=3[ =S [ 5+ [ €~ capn
w jes YU icl Si jeg Y Ui
where a; denotes the centroid of U;. Besides,
> cla) [ =2w Y dd(e) =203 d [ .
iel Si iel iel w
Let us note that, since ( is a Lipschitz function, we have
C(z) = ¢laz)] < I¢llcorw |z — aj| < [[Cllcorw)diam(U;)

for all z € Uj.
On the other hand, observing that

fi = 20y, — iAu,10) X (Duyii — iAy, di) + curl A,
we deduce that |a] < 2|Vul* + |curl A|. Then, letting F.(u, 4,U;) = / ee(u, A),

Uj
the Cauchy-Schwarz inequality gives

7 < 4 (Fulu, AU + U5 B P, A,U) )

Uj

Observe that |U;| < Cdiam(U;)?. Collecting our previous computations, we find

>/ (€= ¢

il

< Orl[¢lloney (Felu, A,w) +rFu(u, A,0)F)

Remembering that /= < 1+ z, we get

[ [ .

el

< Or||¢llcorw) (14 Fo(u, A,w)) .
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This concludes the proof of (4.1). O

Given a two dimensional Lipschitz domain w C 2, we let (s,t,0) denote coordi-
nates in R? such that w C {(s,t,0) € Q}. We define . := p.(u, A)[0s, 9], and write
[ its restriction to w. Theorem 4.1 immediately yields the following corollary.

Corollary 4.1. Let v € (0,1) and assume that (u., A.) € H'(Q,C) x H'(Q,R3) is
a configuration such that F.(u., Ac) < 77, so that by Lemma 2.1 there exists a grid
&(b.,0) satisfying (2.1). Then there exists eo(7y) such that, for any e < gy and for
any face w C Ra(B(be,9)) of a cube of the grid &(b.,0), letting {U;.}jes, be the
collection of connected components of {x € w | |1 — |uc(z)|| > 1/2} and {S; }ier,
denote the collection of connected components of {x € w | |u.(x)| < 1/2} whose
degree d;,, = deg(u./|u.|,0S;.) # 0, we have

Hew — 2T Z di,wéai,w <
icly, CO1 (w)*
C' max(r,, ¢) (1 +/eg(uE,A€)d’}—L2+/ ee(ue,AE)dH1> 7
w ow
where a;,, 1s the centroid of S, 1, = Zjer diam(U;,,), and C is a universal

constant.

In view of the previous corollary, it is important to bound from above r,, d;,
and |I,|. Prior to doing so, let us recall the following result adapted from [Jer99].

Lemma 4.1. Under the hypotheses of Corollary 4.1, there exists eo(7y) such that, for
any € < g9 and for any face w C Ry(B(be,d)) of a cube of the grid &(b.,d), letting
{Siw}icr, be the collection of connected components of {x € w | |u(z)| < 1/2} whose
degree d; ., # 0, we have

2
il <C [V
Si,w
where C is a universal constant.

With the aid of the previous lemma we prove the following result.

Lemma 4.2. Under the hypotheses of Corollary 4.1, there ezists o(7y) such that, for
any € < €g and for any face w C Rao(B(b.,0)) of a cube of the grid B(b., ), letting
{Siw}ier, be the collection of connected components of {x € w | |u.(x)| < 1/2} whose
degree d; ., # 0 and defining r,, as in the corollary, we have

LI < 3l <€ [ ecu a)in?

i€l w
(4.2) Ty < Ce/eg(ug,AE)d’Hg,

where C is a universal constant.
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Proof. The first assertion immediately follows from Lemma 4.1. To prove (4.2)
observe that, by the Cauchy-Schwarz inequality and the co-area formula, we have

1
[ ectuagir? = [ Vhl s S0 e
. 2
s [ ITbl = be)
w g

B / T (e e w | fuelo)] = 1)t

-0 €
We deduce that there exist t; € [1/2,3/4] and ¢, € [5/4,3/2] such that

H {z cw | |u(x)] =t;} < Cs/ ee(ug, A)dH?

w

for i = 1,2. This implies (4.2). O
Remark 4.1. By combining Lemma 4.2 with (2.1¢), we obtain
(4.3) > |I |<C / c(uz, A)dH? < C6 ' F.(u., AL,
wC%z(@(bE, bs7
(4.4) Yo D ldl<C / ee(te, A)dH? < CO 1 F.(u, AL),
wCiRz(@(be,ﬁ)) 'ie]w m2(®(b5,(s))
(4.5) e 1= Z r, < Ce / ee(tue, A)dH? < Ced ' F.(ue, AL),
WCRa(6(be,6)) (6 (bo.5))
where Y- o, (o (b..5)) denotes the sum over all the faces w of cubes of the grid &(b., 9).

5. 3D VORTEX APPROXIMATION CONSTRUCTION

In this section we construct a new polyhedral approximation of the vorticity
p(ue, A:) of a configuration (u., A.) € H'(Q,C) x H'(Q,R?) such that F.(u., A.) <
e~ for some v € (0,1). The notion of minimal connection, first introduced in
[BCLS86], plays a key role in our construction. We begin this section by reviewing
this concept. We then define the function ¢ and the function ¢ for dyq, and describe
how to smoothly approximate these functions. Lastly, we provide our 3D vortex
approximation construction.

5.1. Minimal connections. Consider a collection &7 = {p1,...,pg, N1, ..., 0} of
2k points, where the p;’s are the (not necessarily distinct) positive points and the
n;’s are the (not necessarily distinct) negative points. We define the length of a
minimal connection joining the p;’s to the ni’s by

(5.1) = mmZ\pZ — N5
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where &, is the set of permutations of k indices and hereafter | - | denotes the
Euclidean distance in R3. We also define the 1-current L(<7), a minimal connection
associated to &7, as the sum in the sense of currents of the segments joining p; to
Ne(i), Where o € & is a permutation achieving the minimum in (5.1). Although
there can be several minimal connections associated to a collection 7, we will make
an arbitrary choice of one.

Let us now consider the distance
doa (11, 12) = min{|z; — 25|, d(x1,0Q) + d(x2,0Q)} 71,79 € R®.

We define the length of a minimal connection joining the p;’s to the n;’s through 052
by

k
2 L = 1mi , A,
(5.2) o0() Inin ; doa(pis o (i))

In this case we define the 1-current Lyo(<7), a minimal connection through 0%
associated to o7, as the sum in the sense of currents of the segments joining p; to
Ny when doq(pis Ne@)) = [Pi — Ne(y| and the (properly oriented) segments joining
Pi, Moy t0 02 when doq(ps, ne)) = d(pi, 0Q) + d(nez), 02), where o € & is a
permutation achieving the minimum in (5.2). Once again, if the minimal connection
is not unique we make an arbitrary choice of one.

5.1.1. The function (. The following lemma is a particular case of a well-known
result proved in [BCLS86].

Lemma 5.1. Let & = {p1,...,pr,n1,-..,n} be a configuration of positive and
negative points. Assume, relabeling the points if necessary, that L(<7) = Zle |pi —
ni|. Then there exists a 1-Lipschitz function ¢* : U=y k{pi,ni} — R such that

k

L(«/) =) ("(p) = ¢ (ni) and  ¢"(ny) = ¢*(pi) — Ips — -

i=1
Definition 5.1 (The function (). Let & = {p1,...,pk,n1,..., %} be a configura-
tion of positive and negative points. Denote by (* the 1-Lipschitz function given by
Lemma 5.1. We define the function ¢ : R® — R via the formula

((z) == max (C*(pz')— max d(i,j)(w))

ie{1,....k} je{1,....2k}

with

P if py £ aj
dij) () = (Pi — T, V(ig))s  Vig) = { lplaa]‘ if p; = a].
i = aj

Y

where here and in the rest of the paper the points a; are defined as follows: if j €
{1,....k} thena; =p;, if j e {k+1,...,2k} then a; = n;_y.
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Lemma 5.2. Let & = {p1,...,px,n1,-..,n} be a configuration of positive and
negative points. Denote by (" : U=y x{pi,ni} — R the function given by Lemma
5.1 and define ¢ : R®* — R as in Definition 5.1. Then C is a 1-Lipschitz extension
of C* to R3.

Proof. 1t is easy to see that ( is a 1-Lipschitz function. Let us check that
C(pi) =C(pi) and  ((ny) = ¢"(ny)
for every i € {1,...,k}. Observe that

i) ()] = [pi — 7, v65)] < |pi — ],
Moreover

dijy(a) = |p; — aj| for any a; € o,
thus

C(ar) = ief{rllﬁ?fk}(C*(pi) — |pi — ail).

Since (* is 1-Lipschitz, we deduce that ((a;) < (*(a;). It follows that ((p;) = *(p)
forevery l € {1,...,k}. We conclude the proof by noting that, forany [ € {1,... k},

C(r) = () — [pe =l = ¢ ().
L]

Let us remark that this extension is not the same that appears in [BCL86]. As
pointed out in the introduction (see Section 1.5), our strategy of proof of the main
results combines the use of the co-area formula and the ball construction method
applied on the level sets of the function (. In Section 3, we saw that in order to apply
the ball construction on a surface we need to control its second fundamental form,
but since ( is only Lipschitz, we have no control on the second fundamental form of
its level sets. For this reason we need to smoothly approximate this function and,
moreover, to provide a quantitative estimate of the second fundamental form of the

approximation. We have the following technical result, whose proof is postponed to
Appendix A.

Proposition 5.1 (Quantitative smooth approximation of the function (). Let &/ =
{p1, ... Pk, n1,...,n} be a configuration of positive and negative points. Assume,
relabeling the points if necessary, that L(</) = Zle |pi — ny|. Define Dy =
MaXg, q;e la; — a;| to be the mazimum Euclidean distance between any of the points
of o/ . Then there exist universal constants C,Cy, C7 > 0 such that, for any p €
(0,1/2) and for any 0 < A < Xo(p) = (Co(2k)~°)Y/?, there exists a smooth function
(R — R satisfying:

(1) |L(«7) = S5, (i) — ()| < CDy (2k)° M.
(2) IVQllpe@s < 1.
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(3) For any 0 < k < \?°/3, there exists a set T, C R with
A
A2 — 3K’
such that, for any t € R\ Ty, {z | (\(z) = t} is a complete submanifold of R3
whose second fundamental form is bounded by C1(N\?k)~L.

IT,| < C(2k)®

5.1.2. The function ¢ for dsq. When the Euclidean distance is replaced with the
distance through 0f2 the following lemma can be proved (see [BCL86]).

Lemma 5.3. Let & = {p1,...,pk,n1,...,nx} C Q be a configuration of positive
and negative points. Assume, relabeling the points if necessary, that Lag(<f) =

.....

for the distance dyq, such that
k
Loo(o) = ZC*(pi) —(*(n;) and  ("(ng) = "(pi) — daa(pi, i)
i=1

Definition 5.2 (The function ¢ for dyq). Let & = {p1,...,pr,n1,...,nk} be a
configuration of positive and negative points. Denote by (* the function given by
Lemma 5.1. We define the function ¢ : R? — R for daq via the formula

Cla) = max (¢ () — di(,0).
where
d;(x,00) := min {max ( max _d; ; (x), d(p;, 0Q) — d(z, 8Q)> L d(pi, 09Q) + d(z,09Q) | ,

with

b if
dii) (@) = (pi = 2. Vi), V(z;j):{ "0 p—a,
i = 4

Lemma 5.4. Let &/ = {p1,...,px,n1,...,nk} be a configuration of positive and
negative points. Denote by (" : Ui—1_x{pi,ni} — R the function given by Lemma
5.3 and define ¢ : R® — R as in Definition 5.2. Then C is a 1-Lipschitz extension
of C* to R3, which is constant on OS).

Proof. 1t is easy to see that ( is a 1-Lipschitz function. Let us check that
C(pi) = ¢ (pi) and  ((n;) = ()
for every i € {1,...,k}. By the proof of Lemma 5.2, we know that
dijy(ar) = |pi — | for any a; € 7.
By the triangular inequality, we deduce that
max (|p; — @, d(p;, 09) — d(ar, 09Q)) = |pi — ail.
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Then
d;(a;,002) = min (|p; — a;|, d(p;, 0Q) — d(ay, 0Q)) = doa(pi, @),
which implies that
C(a) = A (C*(pi) — doa(pi; ).

Since ¢* is 1-Lipschitz for the distance dyq, we have that ((a;) < (*(a;). It follows
that ((p;) = (*(p) for every I € {1,...,k}, but

Cm) = ¢ (p) — daa(pr, ) = ¢ ().
Finally, observe that, for all z € 09,

d;i(z,00) := min {max ( max d(i,j)(x),d(pi,aQ)) ,d(pi,aﬁ)} = d(p;, 092).

je{l,....2k}
Thus
= *(p;) — d(p;, 00
((z) @-e%‘f‘ffk}(( (pi) — d(pi, 09))
for all z € 901). OJ

We remark that this extension is not the same that appears in [BCL86]. In order
to provide a lower bound for the free energy close to the boundary, we need to
smoothly approximate the function ( for dsq and provide a quantitative estimate of
the second fundamental form of the approximation. In this paper we describe two
methods of doing this, which may be of independent interest. The first method is
based on an analysis of the curvature of the boundary of the domain, which requires
it to be of class C?. The second method is based on a polyhedral approximation of
0f), which in addition requires it to have strictly positive Gauss curvature.

Proposition 5.2. [Quantitative smooth approzimation of the function ¢ for dgq —
First method] Assume that O is of class C%. Let &/ = {p1,...,px;N1,..., 0} C
be a configuration of positive and negative points. Assume, relabeling the points if
necessary, that Lgq(f) = Zle doq(pi,m;). Then there exist constants 6y, C, Cy, Cy
that depend only on 0 such that, for any p € (0,1/4) and for any 0 < XA < Ao(p) =
(Co(2k)=>)Y?, there exists a smooth function (y : R® — R satisfying:

(1) |Loa(e) = 31y G(pi) = G(na)| < C(2k)°A7.

(2) Letting
(

5.3) Q) = {2 € Q| 2N < dist(z,00) < 6y — 2)},

we have |[V(x| L=, < 1.
(3) |G({x € Q| dist(x,002) < 2X°})| < CA7.
(4) For any 0 < k < A\?/3, there exists a set T, C R with

A

+ (%)Gm + (

IT,.| < C <(2k)8 2k)4>\3p/4> ,

(A% — 3K)
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such that, for any t € () \ T, {x | (\(x) =t} is a complete submanifold of
R3 whose second fundamental form is bounded by Cy(N*k)™!.

The proof of this proposition is deferred to Appendix B.

Proposition 5.3. [Quantitative smooth approzimation of the function ¢ for dgq —
Second method] Assume that 09 is of class C? and has strictly positive Gauss curva-
ture. Let o/ ={p1,...,pk,n1,..., 0} C Q be a configuration of positive and negative
points. Assume, relabeling the points if necessary, that Lag (<) = Zle daq(pi,n;).
Then there exist constants Ty, C, Cy, Cy, that depend only on OS2, such that, for any
T < T, for any p € (0,1/2), and for any
0< A< Xlp,T)= (C’O min {(2/@)_5, (2k) 372, (2k) 174, 7'5})1/p,
there exists a smooth function (y : R* — R satisfying:
(1) [Loa(/) = iy G(p:) = G(ma)]| < CU((2K)° + (2k) 772 + (2k)* 1 1A? + 2k72).
(2) Letting
Q) i={z € Q| 2)\ < dist(z,00)},

we have [[V(y||Le(q,) < 1.
(3) QN Q) < C(7* + N).
(4) For any 0 < k < \*/3, there exists a set T,, C R with

A
(A20 — 3K)’
such that, for any t € (\(2\) \ Tk, {z | (\(z) =t} is a complete submanifold of
R3 whose second fundamental form is bounded by Cy(N\*k)L.

IT.| < C((2k)® 4 778)

We point out that in this proposition the parameter 7 is associated to the poly-
hedral approximation of 0€). The proof of this result is deferred to Appendix C.

5.2. Construction of the vorticity approximation. Let v € (0,1) and consider
a configuration (u., A.) € H'(2,C) x H'(Q,R?) such that F.(u., A.) < &7. Then
Lemma 2.1 provides a grid &(b., ) satisfying (2.1). We begin by constructing our
approximation in the cubes of the grid. For each cube %, € &(b.,¢), Corollary 4.1
gives the existence of points a;, and integers d,,, # 0 such that

,U/s,w ~ 27T E di,waai,wu
S

for each of the six faces w C 0% of the cube %]. Observe that, since du(u., A.) =0

relative to %, we have
S Sa-n

wCa% iel.,
Then, we define a configuration <7 := {p1, ..., Pk, N1, ..., N, } of positive and nega-
tive points associated to 0%, by repeating the points a;,, according to their degree
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d; ., for each of the six faces w of the cube 4;. The previous observation implies
that the number of positive points p;’s and negative points n;’s of the collection o7

are equal. We note that
2= 3, D ldal.

wCo%; i€l
Consider the minimal connection L(47) associated to 7. It may happen that the
segment connecting some p; to n,(; in L(27) belongs to one of the faces w of the
cube €. In this case we define a new connection L(.24) by replacing the original
segment connecting p; to n,; with a Lipschitz curve connecting p; to ng(;) from
the inside (preserving the orientation), so that its intersection with 0% is given by
{pi,No(y}. This process can be performed in such a way that |L(#4) —|L(<7)|| is less
than an arbitrarily small number. We remark that the resulting connection L(7) is
a polyhedral 1-current whose intersection with 0% is equal to U;—y i, {pi,n:}. We
define
Ve, i=21L(e4) in %
for every cube %, € &(b., ).

We now construct our vorticity approximation in © (recall (2.2)). Once again
Corollary 4.1 gives the existence of points a;,, and integers d,,, # 0 such that

ljfa,w 2T Z di,wéaw

i€l
for each face w C My(B(b.,d)) of a cube of the grid such that w C 0&. Then, we
define a configuration e = {P1,- .., Poe> M1, - - - s Mkye ; Of positive and negative

points associated to 0® by repeating the points a;,, according to their degree d;,
for each face w € MRy(B(be,d)) of a cube of the grid such that w C 96. Observe
that, since du(u., A.) = 0 relative to 08, we have

E E di,w = 07
wCoG i€,

which ensures that the number of positive points p}s and negative points n}s of the
collection @75 are equal. We note that

2hoe = > Y |diul.
wCo® il

One might want to define the vorticity approximation close to the boundary as
the minimal connection Lgg (2 ) through 02 associated to @Zg. Unfortunately we
cannot do this, because it is not possible to rule out the possibility of having

Lao(Fas) N (2 ©) # 0.
For this reason, we consider the distance

090 (21, T2) 1= min{d(z1, x2), d(x1,0Q) + d(2,00)} x1, 29 € 08,
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where 0 denotes the geodesic distance on 0.
Let us define

kae

(5.4) Ly, (#ps) = min Zaaﬂ(pi,na(i))

JEG;%@ Y
and the 1-current L, (%), a minimal connection through 02 associated to @
contained in ©, as the sum in the sense of currents of the geodesics (on &) joining
Pi t0 Ny when 990 (pis o)) = 0(pisNo(;)) and the (properly oriented) segments
joining p;, ne(;) to Q2 when doq(pi, o)) = d(pi, 02) + d(ne(;), 02), where 0 € Sy,
is a permutation achieving the minimum in (5.4). If the minimal connection is not
unique we make an arbitrary choice of one.

Performing a replacement argument (from the inside) in ©, analogous to the one
described above, we define a new connection Lo, (e ), With | L, (%) — Loy, (s )|
less than an arbitrarily small number, whose intersection with 9® is equal to
Uiz1... koo 1Pi> i+ and which is contained in ©. We set

Veo '= 27‘(’]]:069 (ﬂag) in @

Finally, we define our polyhedral approximation v, of the vorticity p(u., A.) by

(5.5) Vei= Y Ve +Veo,
61€6(be,0)

where the sums are understood in the sense of currents.

We observe that the topological degree depends on the orientation of the domain
in which it is computed. If a face w C Ra(B(be, d)) belongs to two cubes C; and Cy
of the grid, then its associated collection of degrees d;,’s for C is equal to minus
its associated collection of degrees for Cy. Of course the same occurs for those faces
w belonging to one of the cubes of the grid and to 0®.

On the other hand (2.1a) implies that, for any face w C Ry (&(b.,d)), the inter-
secction between the collection of points a;,’s and R (B (b.,d)) is empty.

By combining these arguments we conclude that the 1-currents v4,’s and vg have
a good compatibility condition between each other. Hence, by construction, v, is a
polyhedral 1-current such that dv. = 0 relative to . In addition it approximates
well p(ue, A.) in an appropiate norm, as we shall show in Section 8.

5.2.1. An important remark towards the proof of the lower bound close to the bound-
ary. Let us study the l-current Ly, (2% ) defined above. We are interested in the
situation 9p0(pi; Ne(i)) = 0(Pis No(s)), Where o denotes a (fixed) permutation achiev-
ing the minimum in (5.4). Since d(z,09) < 2§ for any = € 0®, we have two
possibilities:
® (pi, No(i)) = |Pi — Nw(i)] and there exists a face w C 9B which contains both
points.
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® 0(pi, No(s)) 7 |Pi — No(s)| and there exist (different) faces wy, ..., w4 C 08,
with 2 > J(i) < C* for some constant C* > 0 that depends only on the
boundary, such that p; € wi, Ny € wy(), and

(pis no(iy) = Ipi — @l + lan — ol + - + |qr@y—2 — @@y-1| + [256)-1 — Mo,
where the points ¢; are such that ¢; € dw; N dwj1q, j=1,...,J(i) — 1.

If the second situation occurs for some ¢, we will enlarge the collection of points
ag. We proceed as follows: for any ¢ for which the second situation happens, we
add, for j =1,...,J(i) — 1, the point g; to the collection twice; both as a positive
and negative point (i.e. with degree +1 and —1). This yields a new collection

(5.6) 427:905:{Pb'--729;;%,”1,---,”;;%}
of positive and negative points, which contains @75¢. In particular, we have that
(5.7) kos < C*kpe < C* Z Z |di -
wCa® icl,
Moreover,
IEBQS
(5.8) Lam(%@) ‘= min ZD@Q (Pis Mo (i) = Loy, (Hos).

oc oo i1

The commodity of using this new collection is that there exists a permutation o* €
S, achieving the minimum in (5.8), which is naturally derived from the previous
construction, such that if 990 (i, Ne=(i)) = (D, No=(3)) then (P, No=(i)) = [Pi — N ()|
and there exists a face w C 0® which contains both points. This in particular
implies that

050 (pi, no*(i)) = min{D(pi, no*(i)), d(pl, 89) + d(ng* 89)} = dpn (pi, ng*(i)).
Finally, by [San01, Lemma 2,2], which is a slight modification of the previously cited
well-known result in [BCL86], there exists a 1-Lipschitz function ¢* : U,_; . Api; noy} —
R such that
koo

(5.9) Loy, (Fs) = ZC (pi) =" (no=n)  and  C*(pi) = (no+(3)) = Do (Pi, No=(i))-

Combining this Wlth our previous observation, we get

(5.10) C(pi) = (o)) = doa(Pis No=(i))-

In particular, we can extend this function by defining the function { for dyq as in
Definition 5.2, and therefore in the proof of the lower bound close to the boundary
(see Section 7) will be enough to consider a quantitative smooth approximation
of this extension. It is worth remarking that in this case we cannot ensure that
Ly, (5s) = Laa(2ye), but since (5.10) holds, arguing almost as readily as in the
proofs of Propositions 5.2 and 5.3, one can show that there exists a smooth function
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¢, associated to @ satisfying these propositions with the quantity Lag(#e) being
replaced by Zk% C*(pi) — ¢*(no=(3)). In particular, by combining this with (5.9) and
(5.10), we conclude that

koo

Ly, ( ;zfa@ ZC,\ Pi) — O (no+(i))| < small (quantitative) error.

The function () that we use in Section 7 is precisely the function described here.

5.2.2. The support of v.. To end this section we present a result about the support
of v,.

Lemma 5.5. Let v € (0,1) and assume that (u., A.) € H'(2,C) x H'(Q,R?) is a
configuration such that F.(u., A.) < e77, so that, by Lemma 2.1, there exists a grid
&(be, d) satisfying (2.1). For each face w C Ra(B(b-,0)) of a cube of the grid, let
|1,,| be the number of connected components of {x € w | |u.(z)| < 1/2} whose degree
18 different from zero. Then, letting

(511) B0 = {1 €6 | XLl > 0}
and defining v. by (5.5), we have

e if 3 |I,] >0
supp(v:) C S, = ¢ U { . wCoe :
%LG'JSO 0 if cha(’j |IW| =0

Moreover

|SV5| S 06(1 + 5F€(UE)A€))7

where C' is a constant depending only on OS).

Proof. The first assertion follows readily from the definition of v.. Recall that, by
(4.3), the number of faces w € My (&(b.,0)) of a cube of the grid such that |1,| >0
is bounded above by Cd ' F_.(u., A.). We deduce that #({l | €, € o}) is bounded
above by C67'F.(u., A.). By noting that |©| < C4, for some constant C' depending
only on 0f), we conclude that

15,1 < Y Gl + 18] < S*#({1 | 6 € Bo}) + C6 < C5(1 + 0F.(uc, A.)).

©1€60

6. LOWER BOUND FOR FE.(u.) FAR FROM THE BOUNDARY

In this section we provide a lower bound, in the spirit of (1.1), for the energy
without magnetic field E.(u.) in the union of cubes of the grid &(b.,J) given by
Lemma 2.1. The proof relies on a slicing procedure based on the level sets of the
smooth approximation of the function ¢ constructed in Appendix A and on the ball
construction method on a surface of Section 3.
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Proposition 6.1. Let m, M > 0 and assume that (u., A.) € H'(Q,C) x H'(Q,R3)
is such that F.(us, Ac) = M. < M|loge|™. For any b,q > 0, there exists £g > 0
depending only on b,q,m, and M, such that, for any € < £, letting &(b.,d) denote
the grid given by Lemma 2.1 with § = 0(e) = |loge|™9, and defining v. by (5.5) and
&o by (5.11), if

(6.1)  E-(u,Uges, %) < KM. and ) / e-(u)dH? < K6 ' M.
€€ 96,

for some universal constant K, then

MEBG‘ 10g 6’7(1+b) C
)95 >

1 1
E.(u.,Uges,61) > 5 Z Ve 4] <logg —logC

_ -,
ol |log €|

where C is a universal constant.

Proof. Let us first prove an estimate for each cube of the grid.

Step 1. Lower bound via the co-area formula. We consider a cube %, € &,.
For each of the six faces w of %), denote by {S;. }ier, the collection of connected
components of {x € w | |u.(x)| < 1/2}. We define

S1 = Uycoag Yier, Siw-

Note that |u.(z)| > 1/2 for any = € 9% \ 5.

Denote by <7 = {p1,...Dk,, N1, ..., 1y, } the configuration of positive and negative
points associated to the cube % (see Section 5.2). For parameters p € (0,1/2),
0 < A=A < (Co(2k)™®)7 and 0 < k = k(\) < A?/3 to be chosen later, let
() be the smooth function associated to .27 by Proposition 5.1 and consider the set
T, defined there. Here the constant Cj is the universal constant appearing in the
proposition.

Letting

6 = {z | d(x,%) < C1\?, projg,x & S},
where C is the universal constant appearing in the third statement of Proposition
5.1, we define v, : 4, — C via the formula

V() = uc(projgr) x € %
Observe that

E.(u.,6) > E.(v.,6) — clA%/ e (u.)dH?.
96\S,

In particular, if A% is small enough then E.(v., CK;) < 2M.. We also define

Uy =0z € 0%, | projg = € Si})
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and note that
U\ < > diam(S;.) + (2k) 1A%k,

wCB%”l Z’GL,.)

Since |V(,| < 1, using the co-area formula, we deduce that

B, %) > / e.(0.)|V x| = / / e (v.)dH?dt.
% teR J{C=t}NE

Step 2. Lower bound via the ball construction on a surface. We would now
like to apply the results of Section 3. Let us consider a small number v > 0 and

define
1
V, = {t cR / ee(ve)dH? > —ME}.
{&=t1n%; 2
Note that |V,| < 2K+. Finally, let us define

Thaa =T, UUNUV,, & :={(\ =t} N %, t. = min (i(a;), and  t* := max ()\(a;).

a; € a; €

For t € Tyood := [ts,t*] \ Thaa it holds that:

o fEt e (vo)dH? <y~ IM..

e {(, = t} is a surface whose second fundamental form is bounded by C;(\?k)~1.
Note that this surface is necessarily oriented since it is a level set of (.

¢ %, = {G =t} NOE.

o [v.(z)] > 1/2if d(x,0%;) < C1\?k.

Then Corollary 3.1 applied to v. on ¥; with Q. = C;(\*k)~ and M, = v 1M,
yields that, for any ¢ € Tyo0d,

1 M,
/ e-(v.)dH? > w|deg(v., 0%,)| <log - —log G 5) A
N €

A2k

We point out that we cannot directly apply Corollary 3.1 to u. on 3 = {{, =t} N%;
(for t € Tyo0a), because (3.5) does not necessarily hold in this case. For this reason,

we extended the function u. to % in the previous step.
Noting that 0%, = d({¢\ >t} N 9%;), we deduce that

deg(ve, 0%;) = d(t) := #{i | G(pi) >t} — #{i | (i) >t}

ITo apply the corollary we actually need A™!, s~ !, and v~! to be bounded above by positive
powers of |loge|. For this reason, and because of our choice of these parameters in terms of d(¢)
(see Step 3), we require ¢ to be a negative power of |loge| in the statement.
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By combining our previous estimates, we find

EE(UE,%%) > / / ee(v.)dH?dt
teTgood Et
1
> (log — —log O; ) / d(t)dt
€ A teTgood

1 C1 M. r
> (log L~ log & / d(t)dt—/ d(#)]dt ) .
€ A Ty t€Thad

Moreover, for any t € T}aq,

d(®)] = [#{i | CGa(pi) >t} — #{i | Qi) >t} < k.

Then
/ [d(t)]dt < ki Thaal < ka(|T| 4 [Us| + [V5]).
t€Thaa

On the other hand, observe that
t* t*
|t = [ @Gl > 8} = # | Gl > ey de = ZQ pi) — Galns).

Since

< OD.;(2k)°N < C5(2k)° N

Z C)\ pz C)\ nz

and remembering that |27TL(42%1) — |Ve4]| can be taken arbitrarily small, we conclude
that

t* 1
/ At = 5-|veia] = C (5(2R)°X + (2h))
te ™

where hereafter C' > 0 denotes a universal constant that may change from line to
line. Collecting our previous computations, we find

1 1 C M.
E.(u:,6) > §|V5,cgl‘ <logg — log )\257) - &,

where

1
& =C (5(2kl)6)\9 + ki (|T.| + |Ux| + |Vw’)) logg + Cl)\%/ eg(us)d}ﬁ.
9G\S,

Step 3. Choice of the parameters. We now want to combine the estimates
found for cubes in &,. Observe that if A and x are chosen independent of [ then

") x

€1C®o

B Uneo, ) > 1 3 vl (1og——1og

51660
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Our objective is then to choose the parameters A\, k = k(\), and ~ independent of [
and such that Y-, 4 & < C|loge|™". Since (4.4) implies that

Z(fl€®o 2kl S 05_1ME7

we can achieve our goal provided that A satisfies A < (Co(Co~1M,)=5)V/7.
Letting x = A% /6, and using (4.4), (4.5), and (6.1), we are led to

1 [/ MS M? M? M,
& < Clog- EN 4 SN\ - ——a
%{/2 1 < Og5(55 —|—§9 +625+67)
Ol 0
Then, choosing p = 6/21,
21
1 5\ 1 )
A= ————— ,and Y= —————
[og e[+ 119 og e ¥ M,

we easily check that there exists g > 0 depending only on b, ¢, m, and M, such that
Y ges, 61 < C| loge|~? for any 0 < & < gp. Thus

1 1
E(ue, Uges,61) > 5 Z Ve 4] <1ogg —logC

MEBG‘ log 8’7(1+b) > C
€1€B0

55  |logelt

The proposition is proved. 0

7. LOWER BOUND FOR E_(u.) CLOSE TO THE BOUNDARY

In this section we provide a lower bound, in the spirit of (1.1), for the energy
without magnetic field E.(u.) in ©. The proof relies on a slicing procedure based
on the level sets of the smooth approximation of the function ( for dyg constructed
in Appendix B and on the ball construction method on a surface of Section 3.

Proposition 7.1. Suppose that OS2 is of class C?. Let m, M > 0 and assume that
(ue, A) € HY(Q,C) x HY(Q,R?) is such that F.(u., A.) = M. < M|loge|™. For any
b,q > 0, there exists eqg > 0 depending only on b,q, m, M, and OS2, such that, for any
e < €g, letting &(be, 0) denote the grid given by Lemma 2.1 with § = 6(¢) = |loge| ™9,
and defining ve by (5.5) and ©,08 by (2.2), if

(7.1) E.(u.,©) < KM, and / e-(u)dH?* < K6 'M.
[2])

for some universal constant K > 0, then

1 1 M124| [oo 2| (2041/3)(1+b) o
Ef:‘(uEa@) Z §|V6’@| (10gE —10gC’ € | Og‘€| )

0123 - |logel®’

where C' is a constant depending only on Of).
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Proof. We proceed in a similar way to the proof of Proposition 6.1.

Step 1. Lower bound via the co-area formula. For each face w € Ry(B(b., 9))
of a cube of the grid such that w C 08, denote by {S;.}icr, the collection of
connected components of {x € w | |u-(x)| < 1/2}. We define

Soe = Uycos Uicr, Siw-

)

Note that |u.(z)| > 1/2 for any x € 06 \ Sye.

Denote by Aop = {p1,-. Dl s - - - ,n,;%} C () the configuration of positive and
negative points associated to 0® defined in (5.6). For parameters p € (0,1/4) and
0 < XA < (Co(2kae) )7 to be chosen later, let ¢, be the smooth function associated
to e by Proposition 5.2, or, more precisely, the function described in Section 5.2.1
for which (up to a relabeling of the points) the quantity Loo(hs) is replaced with
Laag(,@%@) in the statement of the proposition. Here the constant Cy = Cy(09) is
the constant appearing in the proposition. In addition, for 0 < k = k(\) < A\*/3 to
be chosen later, consider the set 7T, defined there.

Let
06 ={z € Q\ O | min ||z —ylle = C1A%k},
yeOB

where (] is the constant appearing in the fourth statement of Proposition 5.2.
Observe that d& corresponds to a shrunk version of the polyhedron 8@, or, in other
words, a smaller version of d® with the same shape. Each face w C 9® has a
parallel counterpart face @ C 9® which corresponds to a translated and in some
cases also a shrunk version of w. It is easy to see that there exists a bijective function
f: 06 — G mapping any = € w C I to its unique counterpart point € & C 6.
One immediately checks that, for any =,y € w C 08,

f(@) — 2] < V30N and %!w—y!S\f(x)—f(y)lé\w—y\-

Denoting by © the open region enclosed by 9% and 96, we observe that for any
y € O there exists a unique r, € 06 and a unique t, € [0,1] such that y =
tr + (1 —t)f(x). Letting

@::{ye(’)|xy¢83@},

we define v. : ©U O — C by

ve(y) = ue(y) if y e @7 ve(y) = Ua(xy) if y € 0.

Note that v. is a H'-extension of u. and that

E.(v.,0) < E.(v.,0) < V2Ci\ 2k /

Ces(v)dH? < 201/\2/{/ eo(ug)dH>.
0%

9%
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Thus

E.(u.,0) > E.(v.,0U (5) — E(v., (5) > E.(v.,O U (5) — 26’1)\2/<a/ ee(ug)dH?.
86

In particular, if A?x is small enough then E.(v.,© U (5) < 2M,.. We also define
Uy:=G{y€0@UO)\ Q| z, € Sps})
and note that by (4.4), (4.5), and (5.7), we have
(Ul < [Sos| + V2(2ko0)Ci N2k < Ced™ M. + C6 M A2k,

Since |V (,| < 11in Q,, where Q, is the set defined by (5.3), using the co-area formula,
we deduce that

B.(0.,8U0) > / . (0.)|VGy| = / / . (v ) dH2dt.
(OUO)NN,, teR J{\=t}N(OUO)NQ,

We remark that if § and A%k are small enough then
BUO)NQ =B UO)NQ,,
where Q) == {z € Q | 2\* < d(z,00)}.

Step 2. Lower bound via the ball construction on a surface. We would now
like to apply the results of Section 3. Let us consider a small number v > 0 and

define .
V, = {t eR / ee(ve)dH? > —Mg} )
{E=tIN(OUO)NELy Y

Note that |V,| < 2K~. Finally, let us define
Thaa =T, UUN UV, UG\ ),

Y ={G =t} NOUO)NQ, t, == mingecum,, (r(a;), and t* 1= max,, e, (1(a)-

For t € Tyood := [ts,t*] \ Thaa it holds that:

. fEt e-(ve)dH? < v~ 1M..

o {( =t} = {z € Q| (x) =t} is a surface whose second fundamental form is
bounded by C(M\?k)~!. Note that this surface is necessarily oriented since it is a
level set of (.

e N, ={G=t}N(OUO) and 9%, = {( =t} N (OO UO)\ IN).

o [v.(z)] > 1/2if d(x,0%;) < C1A\%k.

Then Corollary 3.1 applied to v, on ¥; with Q. = C;(\?k)™! and M = y 1M,

yields that, for any t € Tyo0d,

1 M
/E | ce(ve)dH? > mldeg(ve, O%)| (10g - los Cjims ) 3

2To apply the corollary we actually need A™!, s~ !, and v~! to be bounded above by positive
powers of |loge|. For this reason, and because of our choice of these parameters in terms of d(¢)
(see Step 3), we require ¢ to be a negative power of |loge| in the statement.
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We point out that we cannot directly apply Corollary 3.1 to u. on X = {({, =t} N©O
(for t € Tyooa), because (3.5) does not necessarily hold in this case. For this reason,

we extended the function u. to © U O in the previous step.

Noting that 0%, = ({¢y >t} N (DO U O) \ 09)), we deduce that
deg(ve, 0%;) = d(t) := #{i | Cu(pi) >t} — #{i | (u(ni) > t}.

By combining our previous estimates, we find

E.(v.,0U0) > / / e-(vo)dH dt
tGTgood Et
1 C1 M.
7 | log — — log )/ d(t)dt
( € A2Kry t€Tg00a Q

t*
> <1og1 ~log (i; ) (/ d(t)dt _/ |d(t)|dt> |
€ te t€Thaa

Moreover, for any t € T}aq,

[d(t)] = i | i) >t = #{i | G(ni) > 1} < Koe.

Then
/ |d(t)|dt < kow|Toad| < koo (1Tl + U+ V5] 10 ({z € Q | d(z,092) < 2X7}))).
t€Thad

On the other hand, observe that

kow

[t = [ GG > 0= 4 ) > e = > 600 G

Since

kow

Lo (o) — Z O(pi) — G(na) | < C(2kpe)° N,

and remembering that |27 Lo, (%e) — |V-6|| can be taken arbitrarily small, we
conclude that

t* 1 5
/ d(t)dt > —|v.o| — C(2kae ) ).
‘ 2 7

Collecting our previous computations, we find

1 C
B(1,0) 2 glvaol (tou T~ 1og SHE) -
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where

- - 1
B 1=C ((2hoe)* + Foo (1Tl + U] + Vi + [Gu({ € Q| d(z, 092) < 2})])) log -

+201)\2/<a/ ee(ue)dH?.
0

Step 3. Choice of the parameters. We now choose the parameters p, A, k(\)
and . Observe that (4.4) and (5.7) imply that

(2kps) < C6M..
Letting k = A?’/6 and using (7.1), we are led to

L (ME M M? M7 M2 ML
éa@ S Olog — <_6)\P + _5)\39/4 + _5A1_2P + _8)\1—8;) + e + T’Y) '

g\ o° o4 09 o7 0?2
Then, choosing p = 6/55,
1 5\ * 16
1= (ogeming) ™ = e

we easily check that there exists ¢y > 0 depending only on b, g, m, M, and 0f2, such
that o < C|loge|™® for any 0 < & < g5. Thus

1 1 M4 1og & (20+1/3)(1+b) C
Ee(“ea @) > §|VE,®| (10gg - logC - ’ 51‘23 )

-~ [logel”

This concludes the proof of the proposition. O

Remark 7.1. We remark that if in addition 02 has strictly positive Gauss curvature
then we can use the smooth approximation of the function C for dsq constructed in
Appendixz C. By using Proposition 5.3 with 7 = 6 and arquing similarly as above,
one can prove that

1 M€56| log €|7(1+b)

1 C
E.(u.,0) > §|1/€,@] (log - log C 555

[Tog e

) — CdM.|loge| —

8. PROOF OF THE MAIN RESULTS

8.1. Proof of Theorem 1.1. First, using the results of the previous two sections
we prove (1.1).

Proof of (1.1). Since the energy F_(u., A.) is gauge invariant, it is enough to prove
the result in the Coulomb gauge, i.e.

divA,=0inQ and A.-v =0 on 0.
We immediately check that

| Al rsy < O curl Ac|| 20 rs),
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where throughout the proof C' > 0 denotes a universal constant that may change
from line to line. By Sobolev embedding theorem we have

| Al ror3) < Cll Al m1ore)
for any 1 < p < 6. Observe that

/ V.l < / Ve + [P IAP < / Ve + (e = DA + AP
Q Q Q

By the Cauchy-Schwarz inequality, we have

Jaur-viar<([a- ruw); (/ |AE\4); < CeF(us, A.).

E.(u.) < CF.(ue, A.).

Let us consider the grid &(b., d) given by Lemma 2.1. It is not hard to see that, up
to an adjustment of the constant appearing in the lemma, we can require our grid
to additionally satisfy the inequalities

(8.1)

/ e.(u)dH' < C52F.(u., A.), / e.(uw)dH2 < C5 ' Fu(u., A.).
R1(6(be,9)) R2 (6 (be,9))

Thus

We define the polyhedral 1-current v, by (5.5). We recall the notation introduced
in Lemma 5.5 and observe that

[ovul < [ Vauls [ CQup-piaps AR
SVE Sy SV SV

€ € €

Using Holder’s inequality, we find

1
/ (el = 1A < el = s 1S F 1A o, o

£

and

2
| 1A <180 B Ao, oy

€

We are led to

[Vl < [ Va4 CRw, A (w15, +15.07).

€ S €
which implies that

(8.2)
1

1 1 1 2
3 | IV (P 2 B, )~ C (e Ad) (<1, P Pl )} + 15,1
2 Js,, 2e?
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Thanks to (8.1), we can apply Proposition 6.1 and Proposition 7.1 with b = n and
g > 0 (in particular 6 = (¢) = |loge|~?). We then deduce that there exists g9 > 0,
depending only on ¢, m,n, M, and 0f2, such that, for any 0 < ¢ < &g,

1 1 M£124| log 8’(20—‘,—1/3)(14—71) C
E.(u.,S,.) > §|Va|(Q)| (log - log C' 5153 )

 Jloge|™’
where C' is a constant depending only on 0. By combining this with (8.2) and
Lemma 5.5, we are led to

1
| a1 =+ e A

1 M124] log | 20+1/3)(14n)
> |v:|(Q) (108; - log C | (5123 )

C

— CM.55 — .
| log e[

By letting ¢ = ¢(m,n) = 2(m+n), we have M.63 < C|loge|™. This concludes the
proof of the lower bound. O

Before presenting the proof of (1.2) for v =1, let us prove the following lemma.

Lemma 8.1. Let (u., A.) € H'(Q,C) x H'(Q,R3). Then there exists a constant
C > 0 depending only on OS2, such that

(83) ||,LL(U€, A€)||CO(Q)* S CFg(UE7 As)
Proof. By definition
,u(ua AE) - %d (usdAgas - asdAsue) + dAs
_ L
2

Simple computations show that

(due N da_te +ued(da t:) — die N da ue — ted(da,ue)) + dA..

p(ue, Ag) = %(dus Ndy te — tusdi. N Ae — due A dg ue + it.du. N A.) + dA,

- % (da e AdaGe — daiie Adaue) +dA. = ida ue A da@e + dA,.

Integrating on €2 and using the Cauchy-Schwarz inequality, we find

[ e A <2 (R ) + Fafues A)H )
Q

Then we easily check that there exists a constant C'(9€2) > 0 such that

/Qli(uayAs) A Qb‘ < C||¢”CO(Q)F5(U57A5)

for any continuous 1-form ¢, which implies (8.3). O
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Proof of (1.2) for v = 1. Asin the proof of (1.1), we consider the grid &(b., d) given
by Lemma 2.1 and the polyhedral 1-current v, defined by (5.5). The parameter § is

defined as above.
Let ¢ € C3'(Q2) be a 1-form. Note that

84) | [ 40 - v 16| <
Z / ((ue, Ac) — vegg) N Cb‘ + /(N(umAa) —Veo) N
%e®(be,8) ©
First, we consider a cube 4, € &(b.,d) and define ¢; = f%”z ¢. Observe that
(8.5) 16 = dullcoegy < 0l[@llcorg)
and that

L(U(UE>A£) - Vaffz) N Cb‘ <

+

/ (/’L(u€7 As) - Va,‘fz) A (QS - le)
3

Using (8.5), we deduce that

/ (s AL) = veig) A (6 = 1)

On the other hand, since ¢; is a constant, there exist a function f; such that

¢ = dfy, fi=0.
@

/ (:U’(usa Ae) - nggl) VAN le .
%

(8.6)

< Of|p(ue, Ae) — vesglloowg- |0l o g)-

In particular
| fillcorgy < |ul.
By an integration by parts, we have

/%(M(UE,AE) — Vo) N = Z /

wCoG w

(He,w — 27 Z di,w(sai,w> fl-

i€l
Here, we have used the notation introduced in Section 4 and the fact that the re-

striction of 1. ¢ to each of the six faces w of the cube % is equal to 27 Y., d; 0,
Corollary 4.1 then yields that

i€l

Q4.0 *

(87) /?”(ME(UE’ Ae) - stgz) A ¢l

Co Z max(ry, €) (1+/UJ€E<U€’AE)dH2 +/

wCHE, Ow

<

ee<uE,As>dH1> T
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where throughout the proof Cjy denotes a universal constant that may change from
line to line. Using (8.6) and (8.7), we deduce that

| 12(ue, Ae) — Va,%HOOJ(%’l)* < 0| p(ue, Ac) — Va,(leCO(%’j)*

+ Cy Z max(7,, €) <1 +/eg(uE,A€)dH2+/

wCE, Ow

ee(ue, As)d’}-[l)

for any cube %, € &(b.,d). Then by summing over the cubes of the grid, we obtain
(e, As) = vellcon@ey < 6| p(ue, As) — vellcoo)
+ Comax(rg, €) (1 + 2/ ee(ue, A)dH? +8/
R (& (be,0))

ee(ue,AE)d"H1> )
NR1(&(be,0))
Using (2.1b), (2.1c), and (4.5), we find

(8.8) [u(ue, Ac) — vel|cor@e) < O|lpue, Ac) — vellco o)
+ Cpmax (55_1F5(u5, Ag), 5) (1 + 02 F.(u., Aa)) .

We now provide an estimate for the last term in (8.4). Observe that if ¢ is
sufficiently small, and since 99 is of class C?, for any y € O, there exists a unique
T, = projyqy such that y = =, — t,v(z,), for some t, > 0, where v(z,) is the outer
unit normal to 2 at z,. We define f: © — R by

f) = flzy, —tyv(x)) = —tyo(z,) - v(zy).
By noting that, for any y € ©,

VIy) = (0(xy) - v(xy)) v(zy) = d(xy),

one can easily check that

[ fllcore) < [|9llcorey and  ||¢ — V fllco@) < 0l[¢llcor(e)-

We now write

/@(:u(us? AE) - Ve,@)) /\¢ = /@(:u(us? As) - Vs,@) A ((b_ df) + /(9(:“(“67 As) - VE,@) /\df

Observe that

/@ (e A) — vo0) A (6 — df) \ < (s AL) = veolloior 16 — df oo

On the other hand, by an integration by parts, we find

/(;(M(usa AE) - Vs,@) A df = Z (,us,w — 27 Z di,waaiyw)f'

wCoB v i€l
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Here, we have used the fact that the restriction of v, g to each of the faces w of a
cube of the grid such that w C 0& is equal to 27 ), , d; .04, ,. We then deduce
that

/(ﬂ(usa AE) - Vs,@) A ¢ < 6”M(u87145) - VEHCO(G))*
e

+ Comax (e67 ' FL(ue, Ao),€) (1+ 62 Fo(ue, A.)) |9l core
By combining this with (8.4) and (8.8), we find

i€l

[[p(ue, Ac) — VE”(j’g’l(Q)* < 60| plue, Az) — vellooay-
+ Cy max (55_1F€(u6, Ag), s) (1 + 62 F.(u., Ae)) )

Observe now that

[p(ue, Ae) — vellooy- < [[plue, Ae)llco@y- + [[vellco)--
From (1.1), we deduce that

Fe(ua As)

- < C
HVEHCO(Q) 0 ‘10g€|

By combining the previous two estimates with (8.3), we get
(8.9) | (e, A2) — vellcogy < CF(ue, AL),

where C' is a constant depending only on 0€2. This implies that
(8.10)
|| e (e, AE)—V5||C%1(Q)* < CF.(ue, A)+Comax (55‘1Fg(u5, AL, 5) (1 + 02 F.(u., AE)) )

From this, (1.2) for v = 1 follows. O

The proof of (1.2) for v € (0, 1) uses the following simple interpolation fact, as in
[JS02].

Lemma 8.2. Assume p is a Radon measure on Q. Then for any v € (0,1),
liallcg iy < lmllcglay Il o1 g

Proof of (1.2) for v € (0,1). Note that [|u]lco gy < [lptllco g for any 1-current
p. By combining the previous lemma with (8.9) and (8.10), we are led to

Ity A2) = vl gye < CFultey A)' 780 (Fulue, A2) 4+ 1)7 < €8 (e, A) + 1)

for any v € (0,1), where C' > 0 is a constant depending only on v and 02. Then the
proof reduces to proving that this estimate is still valid when we replace the norm
| - ”CS’”(Q)* with || - ||C%7(Q)*. Arguing as in the proof of [JMS04, Proposition 3.1],
we conclude that (1.2) holds for v € (0,1). O
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8.2. Proof of Theorem 1.2.

Proof. As in the proof of Theorem 1.1, we consider the grid &(b., §) given by Lemma
2.1 and the polyhedral 1-current v, defined by (5.5).

Let us first prove the lower bound. The main difference with the proof of (1.1) is
that in this case we cannot use Proposition 7.1 and therefore we cannot provide a
lower bound for the free energy close to the boundary. Moreover, by arguing in the
same fashion as before, we immediately check that

(8.11)
1 1
/ |VAsu6|2+2—52(1—|u€|2)2+| curl A.|* > |v|(Q2\0) (logg —logC
S,

M;G’ log €|7(1+n)

555 )
— CM.5% — C|loge|™,

where § = d(e) = |loge|~? with ¢ > 0. Choosing once again ¢ = 3(m + n), and

noting that by the definition of © (recall (2.2)) we have 2. C 2\ ©, we get the lower
bound.

We now prove the vorticity estimate for v = 1. In this case, we work in the space
CyH(Q)* instead of Co' (Q)*. Let ¢ € C'(Q) be a I-form. We begin by observing
that (8.8) also holds in this case.

Since ¢ = 0 on 052, we have that

[¢llco@) < Codl|9llcoa(e),

and therefore

(8.12)

/(:u(uaa Ae) - Va) A ¢ < 005||H’(u67 Aa) - V&‘HCO(@)*
(S}

On the other hand, from (8.11), we have

Bl cor(e)-

F.(u, A)

- « < Cp——=.
[vellco@ey < Co [log 2|
From (4.4), we deduce that

Fe(usu Ae)
)

HVEHCO(@)* S 005 = C()FE(UE, Az—:)

Therefore
HVEHCO(Q)* S CoFE(UE,AE).
By combining this with (8.3), we get
||[L(’LL8, Aa) - VEHCO(Q)* < CFE(“&) Aa)

From this, (8.8), and (8.12) we obtain the vorticity estimate for 7 = 1. The estimate
for v € (0,1) directly follows from Lemma 8.2. O
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9. PROOF OF THE QUANTITATIVE PRODUCT ESTIMATE

In this section, we use ideas from [Ser17, Appendix A]. As in Section 1.4, we view
things in three dimensions, where the first dimension is time and the last two are
spatial dimensions.

We consider X € 0871([0, T] x w,R?), a compactly supported spatial vector field
depending on time, and a function f € CJ'([0,7] x @). Let K denote the union
of the supports of X and f. In order to reduce ourselves to the situation where X
and f are locally constants, we use a partition of unity at a small scale: let M. be
as in (1.3) and let us consider a covering of K by m(e) balls of radius M 1/ (with
bounded overlap), and let {Dk};n:(i) be an indexation of this sequence of balls and
{Xk};i? a partition of unity associated to this covering such that EZL:(? Xt = 1 and
IV x| e < M2* for any k =1,...,m(e). For each k € {1,...,m(e)}, let then X},
and fr be the averages of X and f in D,. Then, working only in Dy, without loss of
generality, we can assume that X} is aligned with the first space coordinate vector
e1, with (e, e1, e5) forming an orthonormal frame and the coordinates in that frame
being denoted by (¢,w, o). We will assume first that Xy, fr # 0. Let us define for
each k, o the set

Oko ={(t,w) | (t,w,0) € Dy},

which is a slice of Dy, (hence a two dimensional ball). Let us write p. g, for u. (e, e1)
restricted to O ,. In other words, if £ is a smooth test-function on €2, ;, we have

(9.1) / Pego NE= —/ ((due — iuAe,iue) + As) A dE,
@k,a @k,v

where d denotes the differential in the slice ©y,.

For a given A > 0, we let gx be the constant metric on Oy, defined by g (e, e;) =
VA/|fil, gilers en) = 1/(V/A|X]), and gy (e;, e1) = 0.

We then apply the ball construction method in each set Oy ,. Instead of construct-
ing balls for the flat metric, we construct geodesic balls for the constant metric g,
i.e. here, ellipses.

Lemma 9.1. Let O, C R? be as above and denote
ho =17 € O, | disty, (v,004,) > €}

Assume that

1 . .
F.po = 5/ |Oyue — w5<1>5|2 + |Optte — WEBM,|2
ek:,a

1 2\2 2
+ 2_52(1 - |u6| ) + |atBe,w - ach)6| S Me

with M. as in (1.3). Then if € is small enough, there exist a universal constant
C' > 0 and a finite collection of disjoint closed balls B = { B, }icr for the metric gi of
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x ; ._ |fel  AlXk] 1
centers a; and radii r; such that, letting Cj o := max {A‘)];H’ Ifkr N fell Xkl m}
and Ry, 5 = max {Fﬂm}’ we have
(1) 7(B) = 32,1 < Rialful?|Xe?MI,
(2) letting V= @i,o N UiEIBi;
{{luc(z)] = 1] = 1/2} N 65, C V.

(3) writing d; = deg(uc/|uc|,0B;) if B; C O3, and d; = 0 otherwise, we have for
each 1,
1 | fil? : 2 2 ’ 2
(9.2) - ——|Oue — tuD|” + A| Xy || Owtic — iU Be |
2 Bim@i,g A

+ |fk|5|Xk|5M€_2|atBa,w - aw(I)£|2
> 7|d;|(| log e] — C'log M. + log(Cy A1 fil*1 X)) | fil | Xk,
(4) and letting pic o = 27 Y, dida,, we have for any & € 0871(@k70),

< Clléllcor Crnl fr || XkP M EL ko

/ (Js,k,o - ,us,k,a) /\f
®k,o'

Proof. Let us consider the sets

Oro = {(s, z) (@s, \/X|Xkyz) € @,w} , 05, ={z €64, | dz,00y,) > ¢},
and define, for (s,z) € (:);w, the function

\/K
(s,2) = ue <V\/—IZ_\|S \/K]Xk\z,a>

and the vector field

Aus,2) = U Al 2) = VARG U B | (Vs VEIXGs.0 )

The first three items are a consequence of [SS07, Proposition 4.3]. We start by

. . . o ﬂ o 1 .
noting that by making the change of variables ¢t = Ak and w = RS we obtain

1 . 1 . ~ ~
3| VAR o= 0l 410, — 0. Al < CurFor
C—)k,o

The co-area formula provides the existence of m, with M L<m, < 2]\/[;1 such that
setting W = {(s, 2) | |t(s,2)| <1 —m.} has perimeter (for the Euclidean metric)
bounded by CCj reM?. We may then apply this proposition to the configuration
(i1, A.), with initial radius ro = CCyaeM? and final radius r; = | fi|?|X5|2M !
(provided € < 1 such that r; < 1). This yields a collection of disjoint closed balls
B = {B;}c; such that
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o 7(B) = | fil?| X3 M;

oV = @57 N U;B; covers {(s,z) | ||te(s, 2)| — 1] > 2}0@,“,,

e and writing d; = deg(v./|ve|, Géi) if B, C @870 and d; = 0 otherwise, we have for
each i,

1

5 /~ |VAE<€L5/|&5|)|2 + 7’1(7”1 — T0>|83A€7z — 82A573|2 Z W‘dZ’ <10gE — C) .
(B;n©s N\W To

Moreover, by [SS07, Lemma 3.4], we have

[ waabz [ jalv @R+ vl
(Bin©j, ,)\W (BiN©F )\W
> -m) [ 1V 4G/ )
(B:nOs \W

Thus

1 _
5 /~ ‘VAEUEP + (Tl - rO)‘asAa,z - 8ZAE,S‘2
(Bin©% \W

> (1 — m.)?n|d,| <log . c>
To
> ml|d;] (| loge| — C'log M. + log(C,;/l\|fk|2|Xk|2)) )

In particular, we deduce that

Cinlrpo
9.3 D = d;| < —/————
93) Sl < et

Then, by changing variables once again, we obtain balls B;, the images of the B;’s
by the change of variable, which are geodesic balls for the metric g, and whose sum

of radii is bounded by max {%, \ﬂlleI } r(B) < Rpalful?| Xk>?M1. Ttems (2) and

(3) immediately follow from the change of variables and the properties satisfied by
e and /L.

Item (4) follows from [SS07, Theorem 6.1]. Indeed, denoting &; the center of B
and letting fi. ., = 27 Y, d;da,, this theorem yields, for any é S C’g’l(@k,g), that

< C|l€l|corr(B)CraFrpo,

/é (H’(a87 Aa) - ﬁa,k,a) A g

where C' is a universal constant, but, by change of variables, we have

/(:)}W7 (:u(ﬁg, 1215) - ﬂs,k,g) AN é = /(;k’a (Js,k‘,a' — 271'2([&@) A

iel
where a; is the center of the ball B;, i.e. the image by the change of variables of a;,
and £(t,w) = € <%t, \/K|Xk]w> This concludes the proof. O
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Throughout the rest of this section C' > 0 denotes a universal constant that may
change from line to line.

Proof of Theorem 1.3. We proceed similarly to [SS04,Ser17]. We set 9. x, to be the
e ko of Lemma 9.1 (item 4) if the assumption F., < M, is verified, and 0 if not.
We note that

(9.4) | ko — 1967k’0||cg,1(@k’0)* < C(Crnl fulP1 Xel? + VMV F,,

is true in all cases. Indeed, either F,;, < M. in which case the result is true
by item 4 of Lemma 9.1 since MY > M1 or 9., = 0 in which case, for
any & € Cy'(Oy,), starting from (9.1) and writing [(Vu, — iA.ue, ius)| < [Vu, —
iAcue| + |1 — |uc)?||Vue — tAcug| (note that |1 — |uc|| < |1 — |uc|?|), we obtain with
the Cauchy-Schwarz inequality, using the boundedness of Oy,

/ ']s,k,a A 5
ek,cr

< |IV€|| e / (|Ovue — iu Pc| + [Opuc — iueBs,wD(l +[1 - ]u5]2|)
Gk,o'

o~ / 0By — 0.
@ )

k,o
< OHéHCO’l( V Fa,k,a + 5Fa,k:,cr)~

Moreover, since Fyj, > M., we have \/F. o + el < 2M§1/2F5,k,a and thus we
find that (9.4) holds as well.
We may now write that

2
[ a0 — i+ AP0, — i
@k,o' A 7
+ |fk’5‘Xk|5M;2|atBs,w - awq)g‘2>

> (|loge| — Clog M. + log(C x| fil*| Xxl*))

/ PN
ek,a

- COk,ARi,A|fk|3|Xk’3Ma_3/4Fa,k,a-

Indeed, if we are in a slice where 9., = 0, this is trivially true. If not, we apply
(9.2) and obtain

2
/ Xk<|f/’§|—|atue - an‘I)5|2 + A|Xk’2|awu€ _ iuaBe,w|2
(UiB;)Ne;, ,

+APIXPAM 9B 0,01

>2m ) |di| min xx(|log | — C'log M. +1og(Cy il ful| Xul*)) | il [ Xil-

il
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Besides, we have ming, xx > xx(a;) — C max { I\frl le |}TiHXkHCO,1. Plugging this

in, using item 1 of Lemma 9.1 and (9.3), yields the desired inequality.
Combining with (9.4), we find
/ ('fk| 1Otte — 1B |? + A X3 Owtte — itie Be|?
Ok,
1P X M0, Be — D)

> (|loge| — C'log M. + log(Cy i | fl*| Xi[*))

/ el Xl
ek,a

— Cék,ARéAME_gMFg’k’U — C(é)w\ + 1)’fk||Xk|| log €‘M€_1/2Fg7k’g,

Where ékJ\ = Ck,A|fk||Xk| and R]@A = Rk,A|fk||Xk|
Let us observe that

log(Cy Al fil?[Xkl?) > log min(A, A1) + log min(Cy 1| fi|*| X[?, 1).

Moreover (see (9.5))

logmin(C’,;ka|2|Xk|2,1) / | fiel [ Xk X e ko
@k,o'

> — [log min{Cy [ fuPIXu[%, 1| £l X / Vil

> —C max s|log s Xe| Ve
s€(0,1) Ok.o
——c [ v
@k,o'
Notice that, since we assumed that X, is along the direction e;, we have
Xiv
(95) Jg,k,o’ = J(et7 el) = ‘/6 c €2 = ‘/E Tv 0
| Xl

so we may bound

/ el Xel x| > / iV X
ek,U ek,a

We also observe that

/ XlekP’awua - iuaBa,wP = / Xk’Xk’ : (vus - iuaBa)P'
@k’g ek,n



52 CARLOS ROMAN

Plugging in and integrating with respect to o yields

2
/ <’fk’ |Opue — 1u D, |2+A|Xk (Vua—iuaBg)|2
Dy

Ul X4 M 210, By — 0,2 )

> (|loge| — C'log M, — logmax(A, A™1))

/ X fiVe - Xi| — C/ XelVzl
Dy, Dy
— OéhARE’AME_:;MFg,k — O(é}c’A + 1)|fk||Xk|| 10g€|ME_1/2F57k,

where F. ;= f F. ;odo. It is important to note that since C’k,A, RM\ < (' for some
constant C' depending only on A, ||f||s, and || X ||ec, this holds as well if f, = 0 or
X, =0.

We may next replace X, by X and f; by f in the first two terms of the left-hand
side and the fD XkfuVe - Xib term, and using that | X — Xj| < CM_1/4HXHCO,1 and

lf — fx] < CM: 1/4HfHCo,1, the error thus created is bounded above by
CCA)Co(f, X)C1(f, X)M '/ log 2| Fx(Dy),

where Co(f, X) = max{|flloes | Xlloos 1}, C1(f,X) 1= masc{|fllcnn, X floos, 1},
C(A) = max{+, A}, and
1

—/ |0 — iu .| + |V, — du.B.|* +
Dy,

F.(Dy) :== 5

2—82(1 — Jue]?)? + | curl A)?.

Here we have used that by definition of V., we have ka (V.| < CF.;(Dy). Let us
note that

el 1 Xkl M 210 Bew =00 Pe|* < Co(f, X)"MZ? | Jewrl Ac? < 2Co(f, X) M2 F(Dy),

Dy,

ék,A < C(N)Cy(f, X)%, and fizA < C(A)Cy(f, X)®. Summing over k, using that
> e Xt = 1in K (the union of the supports of f and X) and the finite overlap of
the covering, we are led to

2
/ |]/1| |Oue — iuP.|? + A|X - (Vue — iu.B.)|?
(0,T)xw

> (|loge| — C'log M. — logmax(A, A™1)) ‘/ V.- X+
0,

-C > xklVel = Error(e, A, £, X),

(0,T)xw f
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where
Error(e, A, f, X) = CF.(ue, A) (C(A)Col £, X)Ca(f. X) [log el M /" + Co( £, X) "M
FOUN)G(F, X) M 4+ OO (f, XP|log | M H?).

We may now use Theorem 1.2 (notice that X, f, and xj are compactly supported in
w x (0,T)) to replace the velocity by its polyhedral approximation. Since we assume
that F(u., Ac) < M|loge|™, Theorem 1.2 with n > $(2 — m) implies that

/ f‘/a ’ XL = / fye A (_X2dl‘1 + del’g) + @) (| log gl_%(m+3”)>
(0,T)xw (0,T) xw

and

1

/ ZXHVE\ < C’/ maX(’VE/\dl'l‘,’VE/\d.’IZQD—|—O(’10g€‘—§(m+3n)) 7
(0,T)xw & (0,7 xw

which gives

2
/ %]&us —iu.P.|? + A X - (Vue — iu.B.)|?
(0,T)xw

> (|loge| — C'log M. — logmax(A,A™1)) ‘/ fre N (—Xadzy + Xdxs)
(0,T)xw

1

— C/ max(|v. Adx|, [v- Adxs]) + O (\ log 5]’5(’”*?’")“) — Error(e, A, f, X).
(0,7)xw

We observe that —%(m +3n) + 1 < 0 and therefore the error associated to our
approximation goes to zero as ¢ — 0. In addition, for € small enough depending on

A, f, and X, we have
maX(A,Afl) < M. and Error(e, A, f, X) = O] log{f’*%(erSn)Jrl).

This concludes the proof. ([l

APPENDIX A. SMOOTH APPROXIMATION OF THE FUNCTION (

In this section we present the proof of Proposition 5.1. We will regularize the
function ¢ by convolution. Having into account that we need to provide a quanti-
tative estimate of the second fundamental form of the approximation, we will first
displace a bit the points of the collection. The reason for this is that the displace-
ment will ensure that the vectors v(; ; (see Definition 5.1) will satisfy “good” angle
conditions between each other. This will permit us to characterize the set where the
gradient of the convolution is small, which will translate into a control on its second
fundamental form.
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A.1. Displacement of the points. First, we prove some basic geometric prop-
erties which allow us to perform the displacement of the points (see Proposition

A).

Lemma A.1. Consider a unit vector v € R3, a ball B C R?® of diameter D > 0,
and a point © € B. There exists a universal constant ©1 > 0 such that, for any
0 < <, letting C,» py denote the infinite cylinder whose azis is parallel to v
and passes through x, and whose radius is 2DV, we have

Vv X

w—m
for anyy € B\ Cy.p.-

Proof. Let y € B\ C,4.py. We recall that

x —

u—m =l

where 0 is the angle formed by v and =

VvV X

|sinf| = |sind)|,
W |

y‘. Since the radius of the cylinder C, ; p
is 2DY and y & C, ; p g, from Pythagoras’ theorem we deduce that

/D2 + (2D9)?|sin 6| > 2D9.
Therefore, for any 0 < 9 <y, with ¥, such that Q/W =1, we have
|sin 6] > 9.
This concludes the proof. 0

Lemma A.2. Consider two unit vectors vy, vy € R® with v; # £1», a ball B C R3
of diameter D > 0, and a point v € B. Let P be the plane perpendicular to v1 X v
and that passes through x. For any 0 < 9 < ¢y, where ¥, is as in Lemma A.1,
letting

Pyvoans ={y €R® | d(y, P) < 2DV},

if 11 X ve| > O then
det (l/l,VQ, ﬂ) ‘ > 92
[z =y

for anyy € B\ Py, vyu.0.9-
Proof. Let y € B\ Py, v,.2.0,9- We recall that
-y

det | vy, 19, -y
|z —yl [z —yl

where 6 is the angle formed by 14y X vy and ﬁ Since y € B and d(y, P) > 2DV,
from Pythagoras’ theorem we deduce that

v D? + (2D9)?| cos 0] > 2D9.

(11 X 1) - = |1 X 1| | cos 0] > I cos b,

T —y
|z — 9
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Therefore, for any 0 < ¢ < 11, we have | cos | > o, which implies

det (Vl, v, ﬁ) ' > 992,

The previous lemmas allow us to prove the following result.

Proposition A.1. Let o/ = {ay,...,a,} be a collection of m not necessarily dis-
tinct points. Define D, = maxi<ijcj<m|a; — a;| to be the mazimum FEuclidean
distance between any of the points of &/ and assume that D, > 0. Then there ezist
universal constants C1,C" > 0 and a collection of points @/’ = {by,... by} such
that, for any 0 < ¥ < min{Cym~°,9,}, where ¥y is as in Lemmas A.1 and A.2, the
following hold:
(1) b; # b; for any i # j.
(2) Define
=
(4.9) |bz _ bj‘
Then for any o, B,y € A, with o # 3 # v, we have

for (4,7) € Ay :={(p.q) | 1 <p<qg<m}.

Vo X vg] >0 and  |det(va, vs, vy)| > 92
(3) |lag — by| < CD,I°Y for anyl € {1,...,m}.

Proof. Let us first observe that, by definition of D/, there exists a closed ball B,
of diameter D, which contains all the points of the collection <.

We proceed by induction. Define b; = a; and let 0 < ¥ < min{Cym >, 9, }, where
(' is some universal constant to be specified later. Assume that we have defined a
collection {by,...,b} C B, with 1 <1 < m such that:

e For any «, 8,7 € A; with o # 8 # v, we have
Vo X v5] >0 and  |det(v,,vg, v,)| > 92

e |a; — bj| < 8D, (i — 1) for any i € {1,...,1}.

We will next find b1 € B, such that the collection {b1,...,b;, b1} C B, satisfies
that:

e For any «, 8,v € Aj11 with o # 8 # ~, we have
Vo X v3] >0 and  |det(v,,vs, v,)| > 97

L] ‘Cll_;'_l - bl+1’ S 8Dd1519

For any i € {1,...,{} and a € Ay, let C,_ 4, p, 9 denote the cylinder defined in
Lemma A.1 with v = v,, B = By, D = D, and x = b;. In addition, for any
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i€{l,...,l} and o, 8 € Ay with a # 3, let P, ., 5,p,,9 denote the set defined in
Lemma A.2 with vy = vy, o = v, B= By, D =D, and x = b;. We define

l e
Xa= U UCuno.0|Ul U U Puvibibas

i€{1,..,1} acl i€{1,..,1} a,BEN;, a£f
By Lemmas A.1 and A.2, we conclude that, for any y € B, \ X[ 4, the collection
of points {by,...,b;,y} is such that, for any «, 8,7 € Ay g with a # 8 # 7,
Vo X v5] >0 and  |det(v,,vs, v,)| > 92
Let us observe that
| X! aal < CUIN|D29 + 1P D29) < CIPD2 9 < CmPd|B.|,

where C' is a universal constant. In particular, for some sufficiently small universal
constant C; > 0, we have

1
1B \ Xpaa] < E'B’QA

for any 0 < ¢ < min{Cym°,9,}. By recalling the definition of the radius (resp.
thickness) of C,, v,.p,,,0 (resp. Py, ,5.D,,9) and since a;;1 € By, we deduce that
there exists a point b1 € By \ X!, 4 such that

laip1 — b1 | < 22D, 91 + 2D ,,91°) < 8D,01°.
Therefore the collection {by, ..., b, b1} satisfies the desired properties. This con-

cludes the proof of the induction step and the proposition is thus proved. O

A.2. Proof of Proposition 5.1.

Proof. Let us begin by defining the function (). Let &’ = {p!, ..., p},n}, ..., n,} be
the collection of points given by Proposition A.1 with &7 = {py,...,pr, N1, .., Nk}
Observe that, for any 0 < 9 < Cy(2k) ™%, where Cy = min(C},9;), we have

k k
L(&") <> Ip =il <Y |pi = nil + [ps — p| + Ini — nf| < L(o) + C Dy (2k)%0.
i=1 i=1

An analogous argument shows that L(«7) < L(«') + C'D.(2k)%). Therefore
(A1) L(ef) — L") < CD.(2h)°,

where throughout the proof C' > 0 denotes a universal constant that may change
from line to line. Remember that by Lemma 5.1 there exists a 1-Lipschitz function
C* Uimrk{p}, ni} — R such that
k
L") =) ¢ (1) — ¢ ().

i=1
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Define the function ¢ as in Definition 5.1, i.e. set

¢(z) = max (C*(pé) jelax (@ )),

where

U V)
dij () = (p; — T, Vi), V(m')Z{ LN I
0 if pj = a]

Lemma 5.2 yields that ¢ : R* — R is a 1-Lipschitz function such that
k
> ) ¢ ZC v}) L(").
i=1

Next, we regularize the function (. Let ¢ € C°(B(0,1),R,) be a mollifier such that
Jgs p(z)dx = 1. Letting

(A.2) A i=0Y* for p e (0,1/2),

we define
() =y % C() = /RS ex(- = y)C(y)dy  with () = %90 (X) ‘

Argument for the first statement. Observe that || — (3| (r3) < A from which
we deduce that
k

L(") =) G = Gn))

i=1

By combining (A.1) with (A.S) we obtain

ZQ P;)

On the other hand, note that

ZC(Z%’) —((n) — ZC(p;) -

By combining the previous estimate with (A.3), we get

ZQ P;)

Then from (A.4) and (A.5), we deduce that

(A.3) < 2k,

(A.4) < OD.,(2k)%9 + 2k

k
n)| < 57 b= il + 9 — nl] < CD(2k).

i=1

(A.5) < OD,/(2k)59 + 2kA.

k

L(o) — Z Q(pi) — Q)

=1

< CD.(2k)5N.
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Argument for the second statement. Note that
(A) Vo = [ e -0
B(x,\

for any x € R3. We define
A={(,)) | 1<i<k 1<j<2k i#j}
Then, letting
S () =) —dag () for (i,7) € A,
observe that, for almost every y € R3,
VC(Y) = vy i C(Y) = Cayy(y) for some (i, 7) € A.
Since |v; ;)| = 1 for any (4, 7) € A, we have

V@) < /

(@ — )| VC()ldy < / ox( — y)dy — 1
B(z,\)

B(x,\)
for any x € R3.

Argument for the third statement. Let us first prove that there exists a set
P, C R3 such that |(,(Py)] < 2Mk? and that, for any 0 < k < 9?/3,

Co={z R’ | [VQ\(2)| < K} \ P

can be covered by 9B, a collection of at most (2k)® balls of radius CA/(9% — 3k).
We will then conclude the desired result from this.

We start by defining the set Py. Let us consider indices i,7 € {1,...,k} with
i # 7. We let

P ={y R’ | Cup(y) = (i (¥)}
and observe that
Py ={Cp) — ¢(p)) — i + P — 2y, v,5) = 0}
A simple computation shows that
(11 — Y2, V(ijy) =0

for any y1,y2 € P;; with y; # y». This implies that P ; is a plane whose normal is
V(5 and therefore

¢ (ph) + ¢ () — P + P viag))
2

Gy (¥) = Cuay(y) =
for any y € F; ;. We define
Py :={y € R® | d(y, P) < 2)\}, where P := U <;cj<iP;.
We immediately check that |(,(Py)| < CAK2.
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Let us now give a characterization of the gradient of {,. From (A.6), we deduce
that

Vi(z) = ZO‘al/a, where o, = / ox(® —y)c)=cawnydy  for a € A
agA B(z,)

Observe that o, € [0,1] and >° ., 00 = 1. We conclude that, for any z € R?,

V(,\(x) can be written as a convex combination of the vectors v,’s, @ € A. By

Caratheodory’s theorem, we deduce that V(,(x) can be written as a convex combi-

nation of at most four of them.

Now consider a number 0 < x < ¥?/3 and a point z € C,,. We observe that, since
x ¢ P,, if there exists a point y € B(z, A) and indices i,j € {1,...,k} with ¢ # j
such that

C(y) = )W)

then, for any z € B(x, \),

C(2) # (i (2)-
This implies that V{,(x) can be written as a convex combination of at most four
vectors, where if one of them happens to be v, jy for some i,5 € {1,...,k} with

i # j then all the other vectors are different from v(;;) = —v; j). Recalling that the
points of the collection o7’ are such that

Vo X v5] >0 and |det(va,vs, v,)| > 9°

for any a, B,y € {(4,)) | 1 <i <k, 1 <j <2k, i<j} CAwitha#05#7, we
deduce that V{,(z) can be written as a convex combination of at most four vectors
that satisfy these properties.

Let us now show that V{,(z) cannot be written as a convex combination of three
or fewer of the vectors v,’s, @ € A. We have three cases to consider:

e If there exists @ € A such that V(z)(, = v, then
Vr@)] = el = 1.
o If there exist a, 5 € A with a # 3 such that
Vi(z) =o0vy+ (1 —0o)vg
for some ¢ € (0, 1), then

IVO(@)] 2 max { V() X val, V() x v}
=max {(l — o)|v, X vg|,0lve X vg|}

9
> max{o,1 — o} > 5
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o [f there exist a, 5,7 € A with a # 8 # v such that
V() = 0ave + 0pvg + 041

for some numbers o,, 03,0, € (0, 1) with 04 + 0 + 0, = 1, then, assuming
without loss of generality that o, > 3, we have
2

V@) 2 0alva - (v5 X vy)| = Galdet(va, vg, 13) = -

Since x € C,, and Kk < %2 we deduce that the three cases considered above cannot
occur. Therefore we conclude that there exist o, 5,v,n7 € A with a # 8 # v # 7
such that
V() = 0aVa + 0pvs + 041y + 01
for some 04,08, 0,0, € (0,1) with 0, + 05 + 0y + 0, = 1.
Let us consider the system of equations

(A.7) Caly) = Caly) = G (y) = G(v).
We claim that this system admits a unique solution y € R? which in addition satisfies
CA

oyl < =
[z =yl < (92 — 3k)

Writing y = y — x, we observe that g satisfies the linear system of equations Ay = B,
where

Vo = Vg Ca(z) = Co()
A=| vy, —ug and B= | ((z)—(s(2)
Vy — Vg Gn(z) = Ca(z)

Let us check that |det(A)| > 4(9? — 3k). Note that
can assume that o, < i. Observe that

V(@) = v = 0a(Va = V) + 0y (1vy — v3) + o(vy — vp).
By Cramer’s rule, we have

_ det(VG(x) — vg, vy — vg, vy — vp)
a T .
det(vy — vg, vy — v, 1) — 1g)

ithout loss of generality we

=

Simple computations show that
det(VQr (@) — vg, vy — v, vy — vg) = —det (v, vy, 1) + f(VG(2),
where | f(V(\(2))] < 3|V (x)| < 3k. Therefore
|det(VCx(@) = Vg, vy — 3, vy — vp)| > |det(vs, vs, vy)| — |F(VCA(2))] = 0% —
We deduce that

det(Va () — s, vy — s, vy —
Oq

|det(ve — vg, vy — v, 1) — 13)| = s)l > 4(9* — 3k).
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On the other hand, note that there exist x,, zg, z,, z, in B(z, A) such that
((xa) = CalTa), C(z5) = Ca(x5), ((4) = G(24), ((2) = Gylay).

Since
Ga(@) = Cal@a) + C(xa) — C(x5) + Ca(ap) — Co(2)
B=| G(@)—Glxy) +C(ay) — Clap) + Cslzs) — Calz) |,
(@) = Gol@y) + (@) — C(@p) + (o) — Ca(2)
we deduce that |B| < 3. Hence the linear system of equations Ay = B admits a
unique solution which satisfies

CA
V2 — 3k’
Summarizing, if x € C, with 0 < k < 19?/3 then there exist «, 3,v,n € A with
a # 8 # v # n such that the unique solution y € R? to (A.7) lies in the ball
B(x,C\/(¥*—3k)). We conclude that the set C,, can be covered by B,,, a collection
of at most ("41) < (2k)® balls of radius C\/(9? — 3k).

Observing that

9l =ly — 2| = |A7'B| <

C
DG < 5
for any € R3, and letting
T = (\(Upen,. B) U (P,

we conclude that \

V2 — 3k

and that, for any t € R\ Ty, {z | (,(z) = t} is a complete submanifold of R® whose
second fundamental form is bounded by

T.| < C(2k)°

C- supgs | DGy < (QJ .
fE\(Upew, BUPY) VO] T AR
Recalling the relation between A and ¥ (see (A.2)), the proposition follows. O

APPENDIX B. SMOOTH APPROXIMATION OF THE FUNCTION C FOR THE
DISTANCE THROUGH THE BOUNDARY — FIRST METHOD

In this section of the Appendix we prove Proposition 5.2. We will smoothly
approximate the function ( for dgg by convolution, after displacing the points a; as
in Appendix A. The main points of the proof are:

e Since 0f) is assumed to be of class C?, if we reduce the analysis to a small
neighborhood close to the boundary then the gradient of the distance to the
boundary at every point of this neighborhood is given by the normal to the
boundary at the unique projection to the boundary of this point.
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e We will characterize the set where the distance to the boundary is equal
to one or two of the functions (;;’s, while the gradient vectors of these
functions do not satisfy “good” angle conditions between each other in the
sense described in the previous section. One can show that the image of this
set (by our smooth approximation) has small measure. To prove this fact,
we will present an argument based on the curvature of the boundary. The
assumption that 9 is of class C? gives an upper bound for the maximal
principal curvature at each point of the boundary, which roughly speaking
implies that the boundary “cannot wiggle too much”.

e We will adapt the last part of the proof of Proposition 5.1. Arguing in the
same fashion, but using the inverse function theorem, we can show that the
set where the distance to the boundary is equal to three of the functions ¢; ;’s
can be covered by a quantitative number of small balls.

Proof. Let us begin by defining the function (. Let &' = {p},...,p},n},...,n.} be
the collection of points given by Proposition A.1 with &7 = {py,...,pr,n1,. .., Nk}
Observe that D, < diam(Q). For any 0 < 9 < Cy(2k)~5, where Cy = min(C}, ),
we have

K a
Loa(') <Y doa(plni)] < doa(pi. ni) + doa(pi, p}) + doa(ni, n})
i1

=1

< Loa(e7) + Cdiam(Q)(2k).

An analogous argument shows that Ly (o) < Lag(«’) + Cdiam(Q)(2k)59. There-
fore

(B.1) |Loo (/) — Loa(e/")| < C(2k)°0,

where throughout the proof C' > 0 denotes a constant depending only on 0f) that
may change from line to line.

Remember that by Lemma 5.3 there exists a 1-Lipschitz function ¢* : U;—y _x{p}, n}} —
R such that

Loo(#') = ZC*(Z?Q) — ¢*(n5).

Define the function ¢ for dgg as in Definition 5.2, i.e. set

((x) = e (¢*(p}) — di(x,09)),

where

di(z,00) := min {ma'x ( max _d ;) (x), d(p;, 0Q) — d(z, 89)) ,d(p}, 09) + d(x, 0N)

je{l,...2k}
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and

l

pl f lf p 75 a
d(ZJ) (m) = <p2 -, V(@j))a V(i,j) = |p; aJ| ?
0 if p; = d}

Lemma 5.4 yields that ¢ : R® — R is a 1-Lipschitz function such that

ZC(I?Q) ZC P;) (n;) = Loa(").

Next, we regularize the function ¢. Let ¢ € C°(B(0,1), R, ) be a mollifier such that
Jgs ¢(z)dx = 1. Letting

(B.2) A i=0Y? for p e (0,1/4),
we define

G0 = on e €0 = [ o=y with ox() = 3o ()

Argument for the first statement. Observe that || — 3|/ (rs) < A from which
we deduce that

(B.3) < 2k

Log(<') — Z () — G(n))

By combining (B.1) with (B.3), we obtain
k

Loo() = > G(p)) — G(n))

i=1
On the other hand, note that

ZC(I%‘) —((ng) — ZC(Z?;)

By combining the previous estimate with (B.3), we get

Z Cpi) = i) = Z ) = )

Then from (B.4) and (B.5), we deduce that

(B.4) < C(2k)%9 + 2k .

k
< Dl =l + I =] < C(2)%.

(B.5) < C(2k)%9 + 2k .

Loo (o ZCA pi) — G(ma) | < C(2k)°N.

Argument for the second statement. Note that, for any = € R?,

(B.6) V() = / L eV
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Let us observe that, since 9€) is assumed to be of class C?, there exists a fixed
number 6y = 0y(0N) such that if y € Q satisfies d(y, 92) < 0y then

Vd(y,09Q) = v(z,),

where throughout the proof v(z,) denotes the outer unit normal vector to 02 at

2y 1= Projaa(y).
We define

A={(i,j)|1<i<k, 1<j<2k i#j} and c:= %axk}(g*(pg) —d(p,09)).
1€1,...,

Then, letting
iy (+) = C"(p;) — djy() for (i,7) € A
C(+) = c4d(,00)
C () =c—d(-,00),
observe that, for almost every y € Q such that d(y,99) < 6y,
Vg if C(y) = (ujly) for some (i,7) € A
Vi) =§  v(z) if C(y) = ()
—v(zy) if C(y) = (- (y).

In particular, |V((y)| = 1 for almost every y as above. Thus

Vo< [ ae-pVldys [ e iy =1
B(z,)\) B(z,A)
for any
(B.7) reQ ={reQ|2\N <d(x,00) <y —2)\}.

Argument for the third statement. Observe that
((x) =c for any x € 0N.
Thus
|G ({x € Q| d(x,00) <20} < CN.
Argument for the fourth statement. Let us first prove that there exists a set
Py C R? such that [(\(Py)| < C(2k)*\3/4 and that, for any 0 < x < ¥?/3,
C. ={z € Q| |VQ(x)| <k} \ Py

can be covered by B,, a collection of at most C((2k)® + 0y(2k)%(9% — 3k)73) balls
of radius C'\/(9¥? — 3k). We will then conclude the fourth statement from this.

We follow the same strategy as in the proof of the third statement of Proposition
5.1. We start by defining the set Py. First, we let

P = {2z e R®| d(z, P) < 2},
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where

Pi=UicicizrPig, Py ={y € R* | Cap(y) = G ()}
Arguing as in the proof of Proposition 5.1, we deduce that |(,(P)] < CAk2.

Let us also define

Pg,iide = {a: €M\ P/<\ | there exist y1,y2 € B(x,2\),a« € A such that
C)\(yl) = Cay C)\(y2) = Civ and |V0& X iy(2y2)| < 19}

and
P;’rfc’le = {a: € U\ Py | there exist y1, 0, ys € B(x,2)), o, B € A, # 3, such that

(Y1) = Cas Q(Y2) = (s, O(y3) = (&, and | det(Va, g, T0(2y,))] < 792}-
Finally, we let
Py = PMU P)(iiiole U P)(\i’i_pole U P)\tf-ifole U P;fi_pole.
We claim that
I P)(\i,iiole U P)(ii_pole U P;f—ii)ole U P)t:i_pole)| < O(2k)A3/1,
which in turn implies that
(B.8) |Py| < C(2k)493/% = C(2k)*\3/4,

Our argument is based on the curvature of 9€). Given a point z € 0f2, we denote
by kmin(z) the minimal principal curvature of 9Q at z. We also denote by 7rpin(2)
(resp. Tmax(2)) the minimal (resp. maximal) principal radii of curvature at z. Let
us observe that since € is of class C?, for any point z € 9Q, rum(z) > C > 0.

We next study the sets Piii‘)le. Given = € Piiide, let us first assume that
Kmin(2y,)| > 9174, By definition of 7., and by recalling that |v; X vs| = |v;||va|| sin 6]
with 6 being the angle formed by v; and v, we deduce that there exists a constant
C1(09) such that, for any y satisfying

92 =yl = Cirmax(2,,)9,

we have

Ve X £r(2)| > 0.
Moreover, since ryin(2y,) > C > 0, we deduce that there exists C2(0€2) such that,
for any

Cirmax(2g,)V < [y — y| < Oy,

we have

|va X £v(2y)| > 0.
Noting that rpax(2y,) < 1/9Y4, we deduce that {z € Piii‘ﬂe | |Emin(2y,)] > 91/4} can
be covered by vol(£2,)C,?|A| balls of radius Cy9%/4.
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Let us now assume that |kmin(2,,)| < 9174 In this case, the boundary “looks” flat
around z,, in the principal direction of minimal curvature. This, combined with the
fact that the minimal principal radii of curvature is bounded below, immediately
implies that the number of connected components of {x € Pf’ POle | 1 ke nin (24 )| < 9V/4Y
is bounded above by a constant that only depends on 0€2. Then, it is not hard to
see that

G({z € PIE™ | [Kumin(z)] < 9V1H)] < O

Thus
|€)\(Pd1pole)| < C(Qk)2ﬁ3/4
Let us now study the sets P;rf(ﬂe By recalling that |det(vy, v, v3)] = |(v1 X v2) -
v3| = |v1 X vo|vs|| cos @] with 6 being the angle formed by v; X v9 and vz, arguing

similarly as above one can check that
{w € P2 | [kmin(2)] > 91/}

can be covered by Vol(Q,\)C’ (' ‘) balls of radius C193/%. Moreover, arguing as
above we deduce that

G({r € Pﬁfif"le | [min (2)| < 9V41)| < C0.
Thus
[G(PYP)] < C(2k) 9%,

which concludes the proof of the claim.

Let us now give a characterization of the gradient of () for points z € ). From
(B.6), we deduce that

(B.9) VG(2) =) oava+ / Pal@ = y)v(z)Lewy=c, ) dy

ach B(z,A)
s = ) L
B(z,\)

where
o /( )90,\(3; y>14(y)zca(y)dy for o € A.
z,A

Let us observe that if there exists a point x € €, such that {\(z) = £d(x,0Q) then
for any y € B(x,\), (\(y) # Fd(y,0). This implies that if the second term in
the right-hand side of (B.9) is different from zero then the third term vanishes, and
viceversa. For this reason, without loss of generality we assume in what follows that
the third term in the right-hand side of (B.9) vanishes.
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Let us observe that, if there exists y, € B(x, A) such that (\(y.) = d(y., 0f2) then

/ oa(@ — Y)v(zy) Lewy=¢, Ay = v(zy,) / ex(@ = Y)Le)=c, )y
B(x,)\) B(wz,\)

+¢;M@xx—w@@w—m@nﬂwﬁg@@,

but |v(z,) — v(2,,)| < CA, and therefore

/B( N pa(e = y)r(2)Le)=¢, ) dy = 0+(1+ ON)r(z,,),
where
04 = / PA(T = Y)ew)=c, @) dY-

B(z,\)

Thus, (B.9) can be written as
Vi (z) = Z OaVa + 04 (1+ON))v(zy,),

acA
where y, is arbitrarily chosen among the points in y € B(z, A) such that {\(y) =
d(y,09).

Now consider a number 0 < k < ¥?/3 and a point x € C,. We write
Vii(z) = Z Oala + 04+(1+ O(N))v(zy,)
aEA

and observe that since z & P, if o(; ;) > 0 for some (4,5) € A then o(;; = 0.

We will consider two cases. First, if 0, = 0 then, arguing exactly as in the proof
of Proposition 5.1, we conclude that there exist «, 8,7, € A with a #£ 3 # v #n
such that

V() = 0aVa + 0pv5 + 041y + 01
for some 0,,04,0,,0, € (0,1) with 0, + 03 + 0, + 0, = 1, and
| det(va — vp, vy — Vg, vy — vg)| > 3(9° — 3k).
Therefore the unique solution y € R? to (A.7) lies in the ball B(x, CA/(9? — 3k)).

Second, if o, > 0 then, using the fact that = ¢ Py \ P{ and arguing as in the
proof of Proposition 5.1, we conclude that

V(@) = 04 (1 4+ ON)V(24,) + Galia + 00 + 041,
for some o4, 04,08,0, € (0,1) with o + 0, + 05+ 0, =1, and
(B.10) | det(v(z,,) — Vg, Vo — Vg, vy — v5)| > 3(9% — 3k).
Let us consider the function ® : 2, — R? defined via

O(-) = (¢ — G5, Ga — Ca: Gy — ) ()
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Observe that
DO(x) = (v(2y,) — Vg, Vo — Vg, vy — V),
whose determinant satisfies (B.10). Moreover, by noting that
[D®(x) = DE(y)| = [(v(2y,) = v(2),0,0)],
we easily deduce that
(B.11) | det(v(z,) — Vg, Va — Vg, vy — v5)| > (9% — 3K)

for any y € B(z,C (9% — 3k)). Let us observe that our definition of Q2 (see (B.7))
guaranties that B(z, C(¥? — 3k)) C B(x,CA\*) C {x € Q | d(x,09Q) < 0y} for any
sufficiently small A. We also observe that, since there exist z,z,, 25,2, € B(z, \)
such that

C(zy) = Cila4), C(ra) = Cal®a), C(28) = Cplws), ((27) = G(24),

we have
(B.12) |D(x)] < CA

From a “quantitative version” of the inverse function theorem (see [Lan93, Chapter
XIV, Lemma 1.3]), we conclude that ® is invertible in B(x, C(9¥? — 3k)), and since
A < 9 (recall that p < 1/4), 0 € ®(B(z, C'(9* — 3k)). In particular, there exists a
unique y € B(z, C'(Y? — 3k)) such that ®(y) = 0. Moreover
|z =yl =27 (®(2)) — ©7H(0)] < [DO7(2)||®(x) — O

for some z € ®(B(x, C(9¥? — 3k)). This, combined with (B.11) and (B.12), gives

| < CA

T — —_—.

Y= 3k

This means that the unique solution to ®(y) = 0 in the ball B(x, C(9? — 3k)) lies
in the much smaller ball B(z, 7524-).

Since Q) can be covered by C8y(9? — 3k)~3 balls of radius ¥? — 3k, we deduce
that C\ can be covered by B,., a collection of at most

(4.« e - s+ ()

balls of radius C\/(9¥% — 3k).
Observing that

C
D60 < 3
for any x € Q,, and letting
T = (\(Upes, B) U G(Py),
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we conclude that (recall (B.8))

7| < C ((27{3)8 A + (2k)° A T+ (219)4)\%/4)

V2 — 3k (92 — 3k)

and that, for any ¢t € (\() \ Tk, {z | ((z) =t} is a complete submanifold of R3
whose second fundamental form is bounded by

supg, | DGy _c
info,\(Upes, BYUPY) VO T~ A2R

C
Recalling the relation between A and 9 (see (B.2)), the proposition follows. O

APPENDIX C. SMOOTH APPROXIMATION OF THE FUNCTION ( FOR THE
DISTANCE THROUGH THE BOUNDARY — SECOND METHOD

In this section of the Appendix we prove Proposition 5.3. By assuming that
the Gauss curvature of the boundary of €) is strictly positive, we will provide a
convex polyhedral approximation of 02, very close in Hausdorff distance. We will
then smoothly approximate the function ( for the distance through the polyhedral
approximation of 92 by convolution, after performing a suitable displacement of the
points of the collection. The main points of the proof are:

e The commodity of replacing the boundary of the domain by a convex poly-
hedron is that, where well-defined, the gradient of the function distance to
the polyhedron is equal to the normal to one of its faces.

e The strategy of proof is very similar to the one followed to prove Proposition
5.1. But in this case to study the set of points whose gradient is small, we
need to ensure that the normals to the faces of the convex polyhedral approx-
imation of 92 and the vectors v; ;) satisfy “good” angle conditions between
each other. To accomplish this we will carefully choose the approximating
convex polyhedron, and then perform a displacement of the points of the
configuration o7 .

C.1. Polyhedral approximation of the boundary. We denote by 2" = {z,...,z,}
a collection of points belonging to 02 such that
3

5)
1) 27 < mi . N |
(C.1) 57 < 1§ri11¢1jn§nb(:nz,$]) and Vz € 0Q, 0(z,x;) < 57 for some x; € 2,

where from now on 9 denotes the geodesic distance on 92 and 7 € (0, 1) is a given
number. For any x; € 2" let us denote by v(x;) the outer unit normal to 0€2. Define

Qg = mlgign{z | <Z — X, V(Iz» < 0}

It is easy to see that 0§24 is a polyhedral approximation of 92 which in addition is
convex if €2 is convex.
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In the next lemma we show that the points of the collection 2" can be displaced
in order to make the normals v(x;)’s satisfy “good” angle conditions between each
other, when €2 is assumed to have strictly positive Gauss curvature.

Lemma C.1. Let Q be a C? domain and assume that 9 has strictly positive Gauss
curvature. Let 2 = {x1,...,x,} be a collection of points belonging to 02 sat-
isfying (C.1) for a number 7 € (0,1). Then there exist constants 1y, Co,C > 0
depending only on 0S), such that for any 0 < 7 < 7y there exists a collection
2" ={y1,...,yn} C ON such that, for any 0 <9 < Cy7°, the following hold:
(1) 7 <minj<izj<, 0(ys,y;) and, for any z € 0Q, 0(z,y;) < 37 for some y; € 2.
(2) Letting
Qo= Mi<i<of{z | (2 —yi,v(yi)) <0},
where v(y;) is the outer unit normal to O at y;, we have

|d(z,009) — d(z,00)| < C*  for any z € R®.
(3) For anyi,j, k € {1,...,n} with i # j # k, we have
w(yi) x v(y;)l =0 and  |det(v(ys), v(y;), v(ye))| = 9%

Proof. Since we assume that 0€) has strictly positive Gauss curvature, we deduce
that there exists a constant ky(9€2) > 0 such that for any point x € 02 the minimal
principal curvature of 9€) at x is bounded below by k¢. In addition, since 02 is
assumed to be of class C?, we deduce that for any point z € 9Q the maximal
principal curvature of 992 at z is bounded above by a certain constant /,(92) > 0.
From these two facts, we deduce that there exists constants vy, C; > 0 depending
only on 99, such that for any x € 9Q and for any 0 < ¥ < 0y, if v € R? with |v| =1
satisfies
O(v,v(z)) <9,
where 0(v, v(z)) is the angle formed by v and v(x), then for any y € 0 satisfying
Crkg ™ <o(m,y) < CyYKG Y,

we have

0(v,v(y)) 2 9.
Since |v; X vo| = |v1||va|] sin O] with 6 being the angle formed by v; and vy, we easily
deduce that, up to an adjustment of C, for any z € 92 and for any 0 < ¥ < ¥, if
v € R? with |v] =1 is such that

v x v(z)] <9,
then, letting
Dy ={y € 00| Cirg'0 <0(w,y) < O K'Y,
we have
v x v(y)| =
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for any y € D, .

On the other hand, by recalling that | det(vy,ve, v3)| = |v1 X va||vs|| cos O] with 6
being the angle formed by v; X vy and vz, we deduce that, up a further adjustment
of C, for any x € 9Q and for any 0 < ¥ < ¥y, if v,w € R? with |v| = |w| = 1 are
such that

lvx w| > and |det(v,w,v(z))| < ¥
then for any y € D,y we have
[ det(v, w, v(y))| > 0"
Given a point z € 9Q and a unit vector v € R3, we define
Dy ={y € 0 | d(x,y) < K5, Ju x v(y)] < 9}
By the previous arguments, we deduce that D,, 9 = 0 or

Dx,v,ﬂ g Bb(yxa C’1_1[(0_1) \ Dyz,ﬂ

for some y, € 9Q, where By (y,, O K ") denotes a ball (with respect to the distance
0) centered at y, of radius C; 'Ky *. In particular, |D, 9| < C¥?, where hereafter
C' denotes a constant depending only on 0f2 that may change from line to line.

Let us also define, given a point x € 9 and unit vectors vy, vy € R3 with |vy X vg| >
9, the set

Loy a9 = {y € 05 | D(x,y) < Ko_la |det(v1,U2, V(y))| < 192}‘
Arguing as above, we deduce that |T} ., 4, 9] < CV2

We will now proceed by induction. Define y; = z; and let 0 < ¥ < Cyp7—° with
Co = min(1,%y). Assume that we have defined a collection {y,...,y} C 9Q with
1 <l < n, such that for any 4,5,k € {1,...,1l} with i # j # k, we have

V() x vly;)| =9 and  |det(v(y,), v(y;). v(ge)| = 0

and 0(zy,y;) < d; = Cirg (i — 1) + (i — 1)?9) for any i € {1,...,1}.
We will next find a point y,,1 € 9Q with (211, y41) < dji1, such that the
collection {y1,...,y;, yiy1} C OS2 satisfies

V() X vly;)| =9 and  [det(v(y,), v(y,), v(ge)| > 0

for any ¢,5,k € {1,...,1+ 1} with ¢ # j # k.
Let us define

+1 .
Xb:d = U D$l+17V(yi)ﬂ9 U U T$l+17’/(yi)7”(yj)ﬂ9
! i gel1,. 0}, it

Note that, for any y € By(w1, Kj'') \Xéj;j, the collection of points {y1,...,y,y}
satisfies

(y:) x v(y;)l =0 and  [det(v(y:), v(y;), v(yx))| = 0
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for any 7, j,k € {1,...,14 1} with i # j # k. Moreover, by definition of Dy, | ()0
and Ty, | w(yo)w(y)0. We deduce that we can find a point g1 € Bo(zip1, Ko ') \ X1,
which in addition satisfies

0(3314_1, yl+1) S Ollial(lﬁ + l219)

This concludes the induction step and the proof of the third assertion. Let us now
observe that, for any [ € {1,...,n}, we have

dl S Cn219
By noting that n < ¢772 for some universal constant ¢ > 0, we get

d, < Ot~ < CCyr.

Therefore, up to an adjustment of Cy, we have that d; < }17', which ensures that
the first assertion holds. Finally, see [Gru93, Theorem 4] for a proof of the second

statement. This concludes the proof of the lemma. O

C.2. Displacement of the points. With the aid of Lemmas A.1, A.2, and C.1,
we perform the displacement of the points of the collection 7.

Proposition C.1. Let Q be a C? domain and assume that OQ has strictly positive
Gauss curvature. Let &/ = {ay,...,a,} C Q be a collection of m not necessarily
distinct points. Consider a collection Z = {x1,...,x,} C 0Q satisfying (C.1)
and let Z7" = {y1,...,yn} C OQ be the collection of points given by Lemma C.1
for a number T < T, where Ty is the constant appearing in the lemma. Then
there exist constants Cy,Cy > 0 depending only on 9 and a collection of points
" ={by,..., b} CQ such that, for any

¥ < Comin{m=° m~>7% m~ 7% 7°},
the following hold:

(1) b; # b; for any i # j.
(2) Define

for (4,7) € Ay :={(p,q) | L <p<qg<m}

and
Voi=A{vay | (,) € An} U{v(y) | vi € 27}
Then for any u,v,w € ¥ with u # v # w, we have
luxv|>19 and |det(u,v,w)| > 0%

(3) lag —by) < CL(P+ B2+ 149 for anyl € {1,...,m}.
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Proof. First, let us observe that Lemmas A.1 and A.2 hold as well if we replace B
by Q and D by Dq := diam(Q2). Let 0 < 9 < Cymin{m=>,m=37% m~r 75} with
C sufficiently so that we can apply Lemmas A.1, A.2, and C.1. In particular, for
any i,7,k € {1,...,n} with i # j # k, we have

v(yi) x v(y;)| =0 and  |det(v(y:), v(y;), vy)) = 9°.
We proceed by induction. We let by = a; and assume that we have defined a
collection {by,...,b} C Q with 1 <[ < m such that:
e Letting
V= (v | (,3) € AYU{u(m) i€ 27},
for any u,v,w € ¥ with u # v # w, we have
luxv| >9 and |det(u,v,w)| > 9>
o |a; —b| <Ci((i—1)°+ (i —1>37724 (i — 1)) for any i € {1,...,1}, for
some constant C; depending only on 0.

We will next find b1 € Q such that the collection {by,...,b;, b1} C Q satisfies
that:

e For any u,v,w € ¥, with u # v # w, we have
luxv| >9 and |det(u,v,w)| > 9>

° |al+1 — bl+1| < Cl(ZS + 13772 + lT74>’l9.

First, for any ¢ € {1,...,{} and o € Ay, let C,_ p, p,,.0 denote the cylinder defined
in Lemma A.1 with v = v,, B replaced by €2, D replaced by Dq, and z = b;. In
addition, for any i € {1,...,l} and o, 8 € A; with a # 8, let P, 5, pq9 denote
the set defined in Lemma A.2 with vy = v,, v, = v, B replaced by €2, D replaced
by Dq, and x = b;. We define

l .
Xar = U U Curow |Ul U U Puvsbibes

1€{1,...,l} aENg ie{l,...,l} a,BEN;, aFpB

By Lemmas A.1 and A.2, we conclude that, for any y € '\ Xéad’l, the collection of
points {b,...,b;,y} is such that, for any a, 8,y € Ajpq with a # 5 # 7,

Vo X v5] >0 and  |det(vy,vg, v,)| > 92

Second, for any i € {1,...,l} and j € {1,...,n}, let Cy(,)s,pov denote the
cylinder defined in Lemma A.1 with v = v(y;), B replaced by €, D replaced by Dq,
and = b;. In addition, for any ¢ € {1,...,l} and j,k € {1,...,n} with j # k, let
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Pyy;) w(y) bi, Do denote the set defined in Lemma A.2 with vy = v(y;), va = v(yr),
B replaced by €2, D replaced by Dgq, and x = b;. We define

Xll)ad,Q = U U CV(yj),bi,DQﬁ U U U By;) i) bi.Da9

1€{1,...,l} je{1,...,n} 1€{1,..,l} 7,k€{1,....,n}, j#k
By Lemmas A.1 and A.2, we conclude that, for any y € Q'\ Xéad’z, the collection of
points {b1,...,b;,y} is such that, for any o € Ajyq and j, k € {1,...,n} with j # k,
Vo x v(y;)| =9 and  |det(va, v(y;), v(y))| = 9%

Third, for any 7 € {1,...,1}, j € {1,...,n}, and a € Ay, let P, ,(y,)b;,Dq,9 denote
the set defined in Lemma A.2 with 11 = v,, 12 = v(y;), B replaced by €, D replaced
by Dq, and x = b;. We define

Xléad,?, = U U U Pl/a,l/(yj),bi,DQ,ﬂ'
i€{1,..,l} je{1,....n} a€Ny
By Lemmas A.1 and A.2, we conclude that, for any y € '\ X]laadﬁ, the collection of
points {by, ..., b, y} is such that, for any o, f € Aj; 1 witha # Sand j € {1,...,n},
|det(va, vs, v(y;))] > 07,

Finally, we let X{ 4 = X{,4, U X{,q0 U X{,q5 and observe that, for any y €
O\ X! 4, the collection of points {by,...,b,y} is such that, for any u,v,w € ¥,
with u # v # w, we have

luxv| >9 and |det(u,v,w)| > 92
Let us note that
1 X{al < CUN]+ NP + In+ In? + In|A])0 < C(1° + Pn+ In?)9,

where C' > 0 is a constant that depends only on 9. By recalling that n < c¢r=2 for
some universal constant ¢ > 0 and arguing as in the proof of Proposition A.1, we
deduce that, up to an adjustment of the constant Cy, we have

1
Q\ Xl <=0

3 —-1,.4

for any 0 < ¢ < Comin{m=>,m=37% m~7% 75}, In addition, since a;;; € 2, we
deduce that there exists a point b1 € Q\ X| 4 such that

a1 = b < CL(I® + B2+ 1),

where C] is a constant that depends only on 0€2. We conclude that the collection
{b1, ..., b, b1} satisfies the desired properties. This ends the proof of the induction
step and the proposition is thus proved. 0
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C.3. Proof of Proposition 5.3.

Proof. Let us begin by defining the function . Let 2" = {z1,...,2,} C 09 be
a collection of points satisfying (C.1) for a number 7 € (0,1). Apply Lemma C.1
to obtain a collection 2”7 = {y1,...,yn} for 0 < 7 < 715, where 7y is the constant
appearing in the statement of the lemma. Then apply Proposition C.1 with the
collection of points &7 C € to obtain a collection &’ = {p!,...,p},nl,...,nL} C Q.
For any
9 < Comin{(2k)~°, (2k) 572, (2k) "%, 7},

where Cy = Cy(01) is the constant appearing in the statement of the proposition,

we have
k

k
Loo(#') <Y doa(pl,n}) < doa(pi, ni) + doa(pi, p}) + do (1, nj)
=1

i=1

< Loa() 4+ C(2k) ((2k)° + (2k)*77% + (2k)7~) 0,

where throughout the proof C' denotes a constant depending only on 0f2, that may
change from line to line. An analogous argument shows that

Loa(e/) < Loa(e/') + C(2k) ((2k)° + (2k)°77% + (2k)7") 0.
Therefore
(C2)  |Loa(e) — Loo(")| < C(2Kk) ((2k)° + (2k)°7 % + (2k)7*) 0.

Remember that by Lemma 5.3 there exists a 1-Lipschitz function ¢* : U;—y 1 {p}, ni} —
R such that

k
Loa(e') = ZC*(Z?Q) — ("(n).
Define the function ¢ for dsq as in Delejllition 5.2, 1.e. set
(@)= max () — di(w. 0).
where

d;(z,00) := min {max ( max _d ;) (z), d(p;, 0Q) — d(, 89)) ,d(p, 0Q) + d(x, Q)

Je{l,....2k}

and

L T )
dig)(@) = () =2, v6p)s vy =9 Pl P . =
0 if p; = a;

Lemma 5.4 yields that ¢ : R® — R is a 1-Lipschitz function such that

Zap;) —((n)) = Z C*(p) — ¢*(n}) = Loa(a").
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Recall that by Lemma C.1, letting
Qo= Micica{z | (z =y, v(y)) <0},
where v(y;) is the outer unit normal to 0S2 at y;, we have
(C.3) |d(z,0Q9+) — d(z,00)| < Cr? for any = € R®.
Observe that, since 2 is convex, 2 C Q4 and that for any z € Q4
d(w, 0) = nin {y — z,v(y)).

In order to take advantage of this fact, we define a new function by replacing the
distance to 0f2 with the distance to 9€24+. More precisely, we let

(@)= max () = di(. 007.)).

From (C.3), we deduce that
k
Loa(e") = C(pf) = {(n})

i=1

(C.4) < C(2k)72.

Next, we regularize the function . Let ¢ € C°(B(0,1),R,) be a mollifier such that
Jgs ¢(z)dx = 1. Letting

(C.5) A i=0Y* for p e (0,1/2),

we define

() = pr E() = /

RS

8 ' 1 /-
(- =)z with oa() = 5 (5)
Argument for the first statement. Observe that || — (|| reo®s) < A. We deduce
that
ko ) z
D Ch) = ) =D ) = Galnd)
i=1

=1

(C.6) < 2kA.

By combining (C.2) with (C.4) and (C.6), we obtain
(C.7)

Loo(e7) = G(ph) = G(nh)| < C((2K)° + (2k) 772 + (2k)*1)9 + 2k(7% + ).

On the other hand, note that

Z Cpi) — C(ng) — Z C(ph) — ¢(nf)

k
< lpi — il + [P — i
=1

< O(2k) ((2k)° + (2k)> 772 + (2k)77) 9.
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By combining the previous estimate with (C.4) and (C.6), we get
(C.8)
k

ZC(I%’) ZCA P;)

Then from (C.7) and (C.8), we deduce that
k

Loo () — Z (i) — Ca(na)

i=1

| < CU((2K) 54 (28) 7724 (2k) > 7192k (T2 4-)N)).

< C(((2k)° + (2k)* 772 + (2k)2 TN + 2k77).

Argument for the second statement. Note that

(C.9) Vi(z) = /B( N ox(r — 2)V{(z)dz

for any x € R3. We define

AN={,))|1<i<k, 1<j<2k i#j} and c:= ?faxk}(g“*(pg)—d(p;,8(2%/)).
1€1,...,

Then, letting
C(@i)(') ( ;) - l])(') for (Zv]) € A?
G+()=c+ (- —y,v(y) forle{l,...,n},
G-()=c—(—uy,v(y)) forle{l, ... ,n},

observe that, for almost every z € (4,

V(i) 1f§( ) = (i) (2) for some (i, j) € A
V((z) = v(y) if {(z) = CH(z) for some [ € {1,...,n}
—v(y) if (2) = G_(2) forsomel € {1,...,n}.
In particular |[V((z)| = 1 for almost every z € Q4. Thus

V(@) < /B L P < / or(z — 2)dz = 1

B(z,\)
for any z € Q) = {x € Q | 2\ < d(z,00)}.
Argument for the third statement. Observe that
((z)=c for any x € 0Qy.
Thus
QN Q)] < C(7° + ).
Argument for the fourth statement. Let us first prove that there exists a set

Py C R3 such that |(,\(Py)] < 2Mk? and that, for any 0 < k < 9?/3,
Cp ={z €| |VQ(z)] <k} \ P
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can be covered by B, a collection of at most C'((2k)®+7%) balls of radius C\/(9* —
3r). We will then conclude the desired result from this.

We start by defining the set Py,. We let
Py :={z € R? | d(z, P) < 2)\},
where
Pi=UicicjePrj, Py = {2 € R* | {u5)(2) = () (2)}-
Arguing as in the proof of Proposition 5.1, we deduce that |(,(Py)] < CAK?.

Let us now give a characterization of the gradient of () for points z € €2,. From
(C.9), we deduce that

VGO(@) =Y oava+ Y onsv(y) + Yo (—v(y)),

a€EN =

where

O = ox(r —2)1z ¢ (,dz  for a € A,
/B . E2)=Ca(?)
B(z,A

o- = / oa(® = 2)15) ¢ (ndz forle{l,... ,n}.
B(z,\)

Observe that 4, 04,0, € [0,1] and that Y\ 0+ 1 g 014+ 10— = 1. We
conclude that, for any = € Q,, V() (x) can be written as a convex combination of the
vectors v,’s, v(y)’s, and —v(y;)’s with a € A, [ € {1,...,n}. By Caratheodory’s
theorem, we deduce that V(,(z) can be written as a convex combination of at most
four of them.

Now consider a number 0 < x < ¥?/3 and a point z € C. We observe that, since

x ¢ P, if there exists a point y € B(z,A) and indices i,j € {1,...,k} with ¢ # j
such that

then, for any z € B(z, \),
C(2) # (i (2)-
On the other hand, since = € Q,, if there exist a point z; € B(z, A) and an index
l€{1,...,n} such that

C(z4) = G (z4)

then, for any z € B(x, \), 3
¢(2) # G- (2).
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Arguing by contradiction, assume that there exist points z,,z_ € B(z,\) and an
index [ € {1,...,n} such that

(o) = Gi(z4) and (=) =G (=),
Observe that

C(z) = C(z)l <A and (G- (22) — G-(24)] < A
and that
|G (24) = Q= (24)| = 2d(2, 00297) = 2d(z4, 02) > 24,
but
G (24) = G (z)] = [C(z4) = (o) + Gm(22) = Q= (z4)] < 2,

which yields a contradiction with the previous computation.
Analogously, if there exist a point z_ € B(x,\) and an index [ € {1,...,n} such
that

C(z-) =G, (2)

then, for any z € B(x, \),
((2) # G+ (2)-
This implies that V({,(x) can be written as a convex combination of at most four
vectors, where if one them happens to be v, ;) for some ,j € {1,...,k} with i # j
then all the other vectors are different from v(;;) = —v(; ;) and if one of them happens
to be v(y;) (respectively —v(y;)) for some [ € {1,...,n} then all the other vectors
are different from —v(y;) (respectively v(y;)). Recalling that by Proposition C.1, we
have
v X ve| > and | det(vy, va, v3)| > 02

for any vy, ve,v3 € {vuy) | 1 <i <k, 1 <5 <2k i<jtU{v(y)|1<1<n} with
vy # Vg # v3, we deduce that V() (x) can be written as a convex combination of at
most four vector that satisfy the previous property.

Arguing as in the proof of Proposition 5.1, we conclude that, since x € C, and
k < ¥?/3, there exist four different functions

C1,Go, G5 G € {Cgy | (69) € AYU{G4 |y e ZYU{G- |y e 27},

where if (, = () for some (i,7) € A and a € {1,2,3,4} then ¢, # ((;; for any
be{1,2,3,4} \ {a} and if {, = (;+ (respectively (, = ;) for some [ € {1,...,n}
and a € {1,2,3,4} then (, # (;_ (respectively (, # (;+) for any b € {1,2,3,4}\ {a},

such that
4

Vi) =) i

i=1
for some a; € (0,1) with 3.+, a; = 1, and

| det(G — G2, G5 — G2, G4 — )] = 3(9° — 3k).
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Therefore the unique solution z € R? to the linear system of equations

G(2) = G(2) = G(2) = G(z)
lies in the ball B(z,C\/(¥? — 3k)). We deduce that C, can be covered by B, a
collection of at most (lAHi“%l‘) < C((2k)® 4+ 778) balls of radius C\/(9¥* — 3k).
Observing that
D) <
for any x € ), and letting

T, := (\(Upen, B) U G(Py),

we conclude that \

9?2 — 3K
and that, for any ¢t € () \ Tk, {7 | ¢(A(z) = t} is a complete submanifold of R?
whose second fundamental form is bounded by

SUPgq, | DG, < C

info,\(Upes, BYUPY) VG T~ A2R

T.| < C((2k)° +77°)

Recalling the relation between A and ¥ (see (C.5)), the proposition follows. O
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